

Memoria del proyecto para optar al Título de Ingeniero Civil Oceánico

MODELACIÓN HIDRODINÁMICA TRIDIMENSIONAL DE LOS EFECTOS DE LA SURGENCIA EN BAHÍA MEJILLONES

Nicole Maturana Morales Septiembre 2021

MODELACIÓN HIDRODINÁMICA TRIDIMEN-SIONAL DE LOS EFECTOS DE LA SURGEN-CIA EN BAHÍA MEJILLONES

NICOLE PATRICIA MATURANA MORALES

COMISIÓN REVISORA	NOTA	FIRMA
Matías Quezada Labra Profesor Guía		
Patricio Winckler Grez Revisor Docente Universidad de Valparaíso		
Mauricio Reyes Gallardo Revisor Docente Universidad de Valparaíso		

DECLARACIÓN

Este trabajo, o alguna de sus partes, no han sido presentado anteriormente en la Universidad de Valparaíso, institución universitaria chilena o extranjera y organismo de carácter estatal, para evaluación, comercialización u otros propósitos. Salvo las referencias citadas en el texto, confirmo que el contenido intelectual de este Proyecto de Título es resultado exclusivamente de mis esfuerzos personales.

La Universidad de Valparaíso reconoce expresamente la propiedad intelectual del autor sobre esta Memoria de Titulación. Sin embargo, en caso de ser sometida a evaluación para los propósitos de obtención del Título Profesional de Ingeniero Civil Oceánico, el autor renuncia a los derechos legales sobre la misma y los cede a la Universidad de Valparaíso, la que estará facultada para utilizarla con fines exclusivamente académicos.

Matías Quezada Labra

Profesor Guía

Nicole Maturana Morales Alumna Memorista

AGRADECIMIENTOS

Fue un proceso lleno de aprendizaje, son tantas las palabras de agradecimientos que cuesta canalizarlas y expresarlas, ya que son muchas personas que se involucraron de una u otra manera en el proceso y me empujaron a finalizar esta etapa de mi vida.

Empiezo por agradecerle a mi familia. A mis padres Noemí y Patricio por su amor, apoyo y paciencia incondicional, sin ellos este mérito no sería posible. El esfuerzo de ellos me permitió acceder a la educación superior. Estuvieron en todo momento incentivando a finalizar esta etapa, entregando palabras de aliento. Una mención a mis hermanos Carmen y Mauricio, siempre preocupados por contenerme emocionalmente cuando lo necesité. Fueron los pilares fundamentales que me permitieron no abandonar esta travesía oceánica.

A mi profesor Guía, Matías Quezada, por compartir parte de su sabiduría. El que brindó su apoyo incondicional en el transcurso de este camino, sin tener ningún interés de por medio. Siempre dispuesto a resolver las dudas que se fueron presentando. Gracias por el conocimiento adquirido, doc!

Por supuesto agradecer a Ecotecnos S.A., quienes me acogieron en una primera instancia para desarrollar mi práctica profesional y además me facilitaron la información oceanográfica y meteorológica para cumplir con los propósitos de este proyecto. En especial, agradecer al departamento de Oceanografía Física y Modelamiento Matemático, los que estuvieron dispuestos a entregarme las herramientas necesarias para llevar a cabo la modelación numérica. Mención honrosa a José Ribba, quien prestó su apoyo tanto en la práctica profesional como en este proyecto, siempre con buena disposición a enseñar y resolver dudas.

A los amigos y compañeros de U que se involucraron hasta aquí, por los gratos momentos que vivimos. Gracias a los profesores, por sus enseñanzas y conocimientos, sin ellos esto no sería posible. Por último, agradecer a los profesores que fueron parte la Comisión Evaluadora: Mauricio y Pato, los que se sumergieron en la revisión de este proyecto de título.

ÍNDICE DE CONTENIDOS

1.	INT	RODU	UCCIÓN	1
2.	OB.	JETIV	OS	3
	2.1.	OBJE	TIVO GENERAL	3
	2.2.	OBJE	TIVOS ESPECÍFICOS	3
3.	FUI	NDAM	IENTO TEÓRICO	4
	3.1.	PROC	ESO DE SURGENCIA	4
	3.2.	FENÓ	MENO ENOS	5
	3.3.	MODI	ELACIÓN HIDRODINÁMICA DEL OCÉANO	6
		3.3.1.	ECUACIONES QUE GOBIERNAN LA HIDRODINÁMICA	7
		3.3.2.	RESPUESTA DE UN CUERPO ESTRATIFICADO A LA AC- CIÓN DEL VIENTO	8
	3.4.	DESC	RIPCIÓN DE MODELOS NUMÉRICOS	12
		3.4.1.	MIKE 3 FLOW MODEL FM: MÓDULO HIDRODINÁMICO	12
		3.4.2.	MIKE 21 SPECTRAL WAVES FM: MÓDULO DE PROPAGA- CIÓN DE OLEAJE	16
4.	AN'	TECE	DENTES DE LA BAHÍA MEJILLONES	21
	4.1.	ZONA	DE ESTUDIO	21
	4.2.	PROY	ECTOS OPERATIVOS EN LA BAHÍA	23
	4.3.	OCEA	NOGRAFÍA Y METEOROLOGÍA	25
		4.3.1.	OLEAJE	25
		4.3.2.	MAREA	27
		4.3.3.	VIENTO	27
		4.3.4.	TEMPERATURA	28
		4.3.5.	CORRIENTES	28

	4.4.	INFOI	RMACIÓ	N BATIMÉTRICA	28
5.	ME	TODO	DLOGÍA	UTILIZADA	30
	5.1.	CARA	CTERIZ	ACIÓN OCEANOGRÁFICA Y METEOROLÓGICA	30
		5.1.1.	REGIST TERCE	ROS DE ADCP Y VIENTO PROPORCIONADOS POR ROS	30
			5.1.1.1.	CORRIENTE	32
			5.1.1.2.	MAREA	32
			5.1.1.3.	OLEAJE	33
			5.1.1.4.	VIENTO	33
		5.1.2.	REGIST	ROS DE DATOS HISTÓRICOS	33
			5.1.2.1.	MAREA	33
			5.1.2.2.	OLEAJE	33
			5.1.2.3.	TEMPERATURA	34
			5.1.2.4.	VIENTO	35
	5.2.	CARA DROE	CTERIZ DINÁMIC	ACIÓN PRELIMINAR MODELACIÓN NUMÉRICA HI- A	35
		5.2.1.	DOMIN	IO NUMÉRICO	35
			5.2.1.1.	CASO IDEAL	35
			5.2.1.2.	CASO REAL	37
			5.2.1.3.	ESTABILIDAD NUMÉRICA	39
	5.3.	CALI	BRACIÓN	NY VALIDACIÓN	40
		5.3.1.	MODEL	O DE PROPAGACIÓN DE OLEAJE	40
			5.3.1.1.	PROPAGACIÓN A PARTIR DE REGISTROS DE ADCP	41
			5.3.1.2.	PROPAGACIÓN A PARTIR DE REGISTROS HISTÓRI- COS	41
			5.3.1.3.	CONFIGURACIÓN DEL MODELO	42
			5.3.1.4.	POST-PROCESO	42
		5.3.2.	MODEL	O HIDRODINÁMICO	43
			5.3.2.1.	HIDRODINÁMICA A PARTIR DE REGISTROS DE ADCP	43

			5.3.2.2.	HIDRODINÁMICA A PARTIR DE REGISTROS HISTÓRI- COS	43
			5.3.2.3.	CONFIGURACIÓN DEL MODELO	43
			5.3.2.4.	POST-PROCESO	43
	5.4.	EXPL	OTACIÓ	N DEL MODELO	44
		5.4.1.	FORZA	NTES EXTERNAS	44
			5.4.1.1.	MAREA	45
			5.4.1.2.	TEMPERATURA	45
			5.4.1.3.	OLEAJE	48
			5.4.1.4.	VIENTO	48
		5.4.2.	EVALU	ACIÓN DE SURGENCIA	50
			5.4.2.1.	CÁLCULO EXPERIMENTAL Y TEÓRICO PARA UN CANAL RECTANGULAR	50
			5.4.2.2.	RESPUESTA DE LA BAHÍA A LA ACCIÓN DEL VIENTO	52
			5.4.2.3.	RESPUESTA DE LA BAHÍA BAJO CONDICIONES EL NIÑO Y LA NIÑA	53
6.	RES	SULTA	DOS		56
6.	RE5 6.1.	SULTA CARA ROLĆ	ADOS ACTERIZ OGICA	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO-	56
6.	RE 5 6.1.	SULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO-	56 56
6.	RE5 6.1.	GULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56
6.	RES 6.1.	SULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 56 59
6.	RE 5	SULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 56 59 60
6.	RE5 6.1.	SULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3. 6.1.1.4.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 59 60 60
6.	RES 6.1.	GULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3. 6.1.1.4. BASE D	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 59 60 60 60
6.	RE 5	SULTA CARA ROLĆ 6.1.1. 6.1.2.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3. 6.1.1.4. BASE D 6.1.2.1.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 59 60 60 62 62
6.	RE5 6.1.	GULTA CARA ROLĆ 6.1.1.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3. 6.1.1.4. BASE D 6.1.2.1. 6.1.2.2.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 59 60 60 62 62 63
6.	RE5 6.1.	6.1.2.	ADOS ACTERIZ OGICA REGIST 6.1.1.1. 6.1.1.2. 6.1.1.3. 6.1.1.4. BASE D 6.1.2.1. 6.1.2.2. 6.1.2.3.	ACIÓN PRELIMINAR OCEANOGRÁFICA Y METEO- TROS DE ADCP PROPORCIONADOS POR TERCEROS . CORRIENTES	56 56 56 59 60 60 62 62 63 65

	6.2.1.	DOMIN	IO NUMÉRICO	67
		6.2.1.1.	ESTABILIDAD NUMÉRICA	67
6.3.	CALI	BRACIÓ	N Y VALIDACIÓN	67
	6.3.1.	MODEI	LO DE PROPAGACIÓN DE OLEAJE	67
		6.3.1.1.	PROPAGACIÓN A PARTIR DE REGISTROS DE ADCP	67
		6.3.1.2.	PROPAGACIÓN A PARTIR DE REGISTROS HISTÓRI- COS	69
	6.3.2.	MODEI	LO HIDRODINÁMICO	76
		6.3.2.1.	HIDRODINÁMICA A PARTIR DE REGISTROS DE ADCP	76
		6.3.2.2.	HIDRODINÁMICA A PARTIR DE REGISTROS HISTÓRI- COS	80
6.4.	EXPL	.OTACIÓ	N DEL MODELO	88
	6.4.1.	EVALU	ACIÓN DE SURGENCIA	88
		6.4.1.1.	CÁLCULO EXPERIMENTAL Y TEÓRICO PARA UN CANAL RECTANGULAR	88
		6.4.1.2.	RESPUESTA DE LA BAHÍA A LA ACCIÓN DEL VIENTO	90
		6.4.1.3.	RESPUESTA DE LA BAHÍA BAJO CONDICIONES EL NIÑO Y LA NIÑA	105
CO	NCLU	SIONES	6 1	.23
. RE	FERE	NCIAS	BIBLIOGRÁFICAS 1	25
NEX	0		1	29
А.	OBTE	ENCIÓN	MODELO DE ELEVACIÓN DIGITAL	129
	A.1.	MALLA	BATIMÉTRICA	129
	A.2.	DESCR	IPCIÓN MODELO HYCOM	130
В.	CIRC	ULACIÓ	N HIDRODINÁMICA A PARTIR DE DATOS ADCP1	131
С.	CIRC COS	ULACIÓ	N HIDRODINÁMICA A PARTIR DE REGISTROS HISTÓRI-	138
Б	FUNC	CIONES I	DE TRANSFERENCIA	144

ÍNDICE DE FIGURAS

3.1.	Comportamiento de la circulación oceánica y atmosférica bajo los efectos de El Niño y La Niña	5
3.2.	Rango de aplicabilidad de las RANS, DNS y LES de acuerdo con el espectro de energía de Kolmogorov	7
3.3.	Cuerpo de agua estratificado en dos capas, (a) expuesto a un esfuerzo de corte del viento actuando en la superficie libre en dirección x , (b) provocando el desplazamiento de la superficie libre y de la interfaz de densidad	9
3.4.	Respuesta del cuerpo de agua estratificado, (a) provocando que ambas capas se desplacen verticalmente en sus extremos, (b) provocando surgencia en respuesta a fuertes vientos generando una mayor inclinación de la interfaz de densidad	10
3.5.	Mallado tridimensional descrito para el modelo hidrodinámico, donde (a) el dominio horizontal comprende una malla estructurada y el vertical una no estructurada, considerada para éste ultimo (b) una grilla en coordenadas sigma.	16
4.1.	Ubicación geográfica de la zona de estudio a nivel regional y local de Bahía Mejillones, en coordenadas UTM, WSG 1984, Huso 19k	22
4.2.	Ubicación geográfica de variables oceanográficas y meteorológicas a utilizar en los modelos numéricos, coordenadas UTM en metros, Dátum WSG 1984, Huso 19k.	26
4.3.	Extensión de cartas náuticas utilizadas en la construcción del dominio numérico.	29
5.1.	Diagrama de flujo de la metodología utilizada.	31
5.2.	Ubicación geográfica de puntos con información de temperatura desde mo- delo HYCOM, dentro del dominio numérico utilizados para generar la con- dición inicial del modelo hidrodinámico, en coordenadas UTM en metros, Dátum WSG 1984, Huso 19k	34
5.3.	Malla 3D para el caso ideal utilizada en el modelo hidrodinámico. Vista en planta de (a) malla triangular no estructurada, donde es posible advertir los bordes oceánicos, que serán forzados, en color azul (S), verde (N) y rojo (W), y (b) batimetría final con profundidad constante. Vista del perfil de profundidades de (c) malla estructurada para el tramo CB demarcado en (b). Coordenadas UTM en metros, Huso 19K	36

5.4.	Malla 3D para el caso real utilizada en el modelo de propagación de oleaje e hidrodinámico. Vista en planta de (a) malla triangular no estructurada, donde es posible advertir los bordes oceanicos, que fueron forzados, en color azul (N), verde (W) y rojo (S), y (b) batimetría final. Vista del perfil de profundidades de (c) malla estructurada para el tramo AB demarcado en (b). Coordenadas UTM en metros, Huso 19K	38
5.5.	Puntos de control dentro del dominio para analizar estabilidad numérica.	39
5.6.	Metodología utilizada para obtener el dominio numérico y luego realizar el proceso de calibración y validación a través del modelo de propagación de oleaje e hidrodinamico a partir de registros históricos.	41
5.7.	Metodología utilizada en la explotación de los modelos concernientes a la Bahía.	49
5.8.	Metodología utilizada en la explotación de los modelos concernientes al Canal.	50
5.9.	Condición inicial de temperatura en el dominio $x-z$ del modelo C26	52
5.10.	Condición inicial de la simulación en la Bahía para la variable temperatura, para el caso B3	54
5.11.	. Transecta AB del dominio Bahía considerada para evaluar surgencia	54
6.1.	Rosa de las corrientes de <i>Datos ADCP1</i> para la campaña de verano, co- rrespondiente a la (a) capa de fondo, (b) intermedia y (c) superficial. La ubicación del instrumento de medición se observa en la Figura (4.2)	57
6.2.	Rosa de las corrientes de <i>Datos ADCP1</i> para la campaña de invierno, co- rrespondiente a la (a) capa de fondo, (b) intermedia y (c) superficial. La ubicación del instrumento de medición se observa en la Figura 4.2	58
6.3.	Rosa de los vientos de <i>Data Viento</i> correspondiente a (a) la campaña de verano y (b) de invierno. La ubicación del instrumento de medición se observa en la Figura 4.2.	61
6.4.	Comportamiento del nivel de mar de <i>Datos Marea</i> de la (a) campaña verano e (b) invierno	62
6.5.	Diagrama de rosa de <i>Datos Oleaje</i>	63
6.6.	Curvas de excedencia de <i>Datos Oleaje</i> , (a) altura de ola y (b) periodo peak, proveniente de SW	65
6.7.	Diagrama de rosa de <i>Datos Viento</i>	66
6.8.	Curvas de excedencia de <i>Datos Viento</i> para velocidad proveniente desde S y SW	66
6.9.	Estabilidad numérica de la batimetría real, mediante la velocidad de la	

corriente para los puntos de control (a) P1 y P2, (b) P3 y P4 y (c) P5 y P6. 68

6.10	 b). Serie de tiempo de propagación de oleaje mediante construcción de borde con Datos ADCP1 (color rojo) y mediciones de campaña verano de Datos ADCP1 (color azul) de (a) altura significativa, (b) dirección peak, y (c) periodo peak. 	70
6.11	. Serie de tiempo de propagación de oleaje mediante construcción de borde con <i>Datos ADCP1</i> (color rojo) y mediciones de campaña invierno de <i>Datos</i> <i>ADCP1</i> (color azul) de (a) altura significativa, (b) dirección peak, y (c) periodo peak	71
6.12	2. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña verano 2016 para H_s a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	72
6.13	B. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña verano 2016 para D_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	72
6.14	l. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña verano 2016 para T_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	72
6.15	6. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña invierno 2016 para H_s a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	73
6.16	6. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña invierno 2016 para D_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	73
6.17	7. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP1</i> (en azul), campaña invierno 2016 para T_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	73
6.18	8. Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP2</i> (en azul), campaña verano 2016 para H_s a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	74
6.19). Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP2</i> (en azul), campaña verano 2016 para D_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	74
6.20). Propagación de oleaje a partir de registros históricos (en rojo) y registros de <i>Datos ADCP2</i> (en azul), campaña verano 2016 para T_p a través de (a) curvas de excedencia, (b) gráfico dato a dato y (c) gráfico Q-Q	74
6.21	. Velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos</i> ADCP1 (en cobre) y registrada por <i>Datos</i> $ADCP1$ (en azul), correspon- diente a la capa de fondo de la campaña verano 2016, a través de (a) serie	T
	de tiempo y (b) grafico Q-Q. \ldots \ldots \ldots \ldots \ldots \ldots	77

6.22. Velocidad de la corriente a partir de modelación hidrodinámi ADCP1 (en cobre) y registrada por Datos ADCP1 (en azul) diente a la capa intermedia de la campaña verano 2016, a tr serie de tiempo y (b) gráfico Q-Q.	ca de <i>Datos</i> , correspon- ravés de (a) 	7
6.23. Velocidad de la corriente a partir de modelación hidrodinámi ADCP1 (en cobre) y registrada por Datos ADCP1 (en azul) diente a la capa superficial de la campaña verano 2016, a través de tiempo y (b) gráfico Q-Q.	ca de $Datos$, correspon- s de (a) serie 	7
6.24. Velocidad de la corriente a partir de modelación hidrodinámi <i>ADCP1</i> (en cobre) y registrada por <i>Datos ADCP1</i> (en azul) diente a la capa de fondo de la campaña invierno 2016, a través de tiempo y (b) gráfico Q-Q	ca de $Datos$, correspon- s de (a) serie 	3
6.25. Velocidad de la corriente a partir de modelación hidrodinámi ADCP1 (en cobre) y registrada por Datos ADCP1 (en azul) diente a la capa intermedia de la campaña invierno 2016, a t serie de tiempo y (b) gráfico Q-Q.	ca de <i>Datos</i> , correspon- ravés de (a) 	3
6.26. Velocidad de la corriente a partir de modelación hidrodinámi <i>ADCP1</i> (en cobre) y registrada por <i>Datos ADCP1</i> (en azul) diente a la capa superficial de la campaña invierno 2016, a t serie de tiempo y (b) gráfico Q-Q.	ca de <i>Datos</i> , correspon- ravés de (a) 	3
6.27. Nivel del mar a partir de modelación hidrodinámica de <i>Dato</i> registrado por <i>Datos ADCP1</i> para campaña de (a) verano e 2016, respectivamente	<i>s ADCP1</i> y (b) invierno)
6.28. Velocidad de la corriente a partir de modelación hidrodinámi ADCP1, MVO (en amarillo), M (en cobre), O (en negro) y correspondiente a la capa (a) de fondo, (b) intermedia y (c) s la campaña verano 2016	ca de <i>Datos</i> V (en azul) uperficial de 	L
6.29. Velocidad de la corriente a partir de modelación hidrodinámica históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul) diente a la capa de fondo de la campaña verano 2016, a través de tiempo y (b) gráfico Q-Q	de registros), correspon- ; de (a) serie 83	3
6.30. Velocidad de la corriente a partir de modelación hidrodinámica históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul) diente a la capa intermedia de la campaña verano 2016, a través de tiempo y (b) gráfico Q-Q	de registros), correspon- s de (a) serie 83	3
6.31. Velocidad de la corriente a partir de modelación hidrodinámica históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul) diente a la capa superficial de la campaña verano 2016, a través de tiempo y (b) gráfico Q-Q.	de registros), correspon- s de (a) serie 	3

6.32.	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul), correspon- diente a la capa de fondo de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q	84
6.33	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul), correspon- diente a la capa intermedia de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q	84
6.34	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos (en cobre) y registrada por <i>Datos ADCP1</i> (en azul), correspon- diente a la capa superficial de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q.	84
6.35	. Nivel del mar a partir de modelación hidrodinámica de registros históricos y registrado por <i>Datos ADCP1</i> para campaña de (a) verano e (b) invierno 2016, respectivamente.	86
6.36	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos con un nivel del mar constante (en negro) y señal de marea (en amarillo), correspondiente a la capa de fondo de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q	87
6.37	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos con un nivel del mar constante (en negro) y señal de marea (en amarillo), correspondiente a la capa intermedia de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q	87
6.38	. Velocidad de la corriente a partir de modelación hidrodinámica de registros históricos con un nivel del mar constante (en negro) y señal de marea (en amarillo), correspondiente a la capa superficial de la campaña invierno 2016, a través de (a) serie de tiempo y (b) gráfico Q-Q	87
6.39	. Surgencia generada en el Canal mediante modelación hidrodinámica del caso C26	89
6.40	. Gráfico del número de Richardson vs velocidad de entrainment normali- zada por velocidad de corte del viento, para los sets de puntos calculados (naranja) y aquellos desarrollados por Monismith (1986) (azul)	92
6.41	. Respuesta hidrodinámica de la acción del viento en la Bahía, momento en que ocurre surgencia en Punta Angamos considerando los casos (a) de invierno, (b) condición base y (c) de verano	93
6.42	. Evolución temporal de la TSM en [°C] desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr], (d) transcurrida 13.2 [hr] y (d) transcurrida 16.5 [hr]; para verano	96

 6.43. Evolución temporal de la temperatura del mar en [°C], equivalente al perfil vertical del tramo AB (Figura 5.11), desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr], (d) transcurrida 13.2 [hr] y (d) transcurrida 16.5 [hr]; para verano. 	97
 6.44. Evolución temporal de la velocidad de la corriente en [m/s] desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr], (d) transcurrida 13.2 [hr] y (d) transcurrida 16.5 [hr]; para verano. 	98
 6.45. Evolución temporal de la TSM en [°C] desde el inicio de la surgencia (a), transcurridas 1.7 [hr] (b) transcurridas 3.4 [hr] (b) transcurrida 5.1 [hr], (c) transcurrida 6.8 [hr], (d) transcurrida 8.5 [hr]; para la condición media. 	99
 6.46. Evolución temporal de la temperatura del mar en [°C], equivalente al perfil vertical del tramo AB (Figura 5.11), desde el inicio de la surgencia (a), transcurridas 1.7 [hr] (b) transcurrida 3.4 [hr], (c) transcurrida 5.1 [hr], (d) transcurrida 6.8 [hr] y (d) transcurrida 8.5 [hr]; para la condición media 	100
 6.47. Evolución temporal de la velocidad de la corriente en [m/s] desde el inicio de la surgencia (a), transcurridas 1.7 [hr] (b) transcurrida 3.4 [hr], (c) transcurrida 5.1 [hr], (d) transcurrida 6.8 [hr] y (d) transcurrida 8.5 [hr]; para la condición media. 	101
 6.48. Evolución temporal de la TSM en [°C] desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr] y (d) transcurrida 13.2 [hr]; para invierno. 	102
 6.49. Evolución temporal de la temperatura del mar en [°C], equivalente al perfil vertical del tramo AB (Figura 5.11), desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr] y (d) transcurrida 13.2 [hr]; para invierno. 	103
 6.50. Evolución temporal de la velocidad de la corriente en [m/s] desde el inicio de la surgencia (a), transcurridas 3.3 [hr] (b) transcurrida 6.6 [hr], (c) transcurrida 9.9 [hr] y (d) transcurrida 13.2 [hr]; para invierno. 	104
6.51. Comportamiento de la (a) TSM [°C], (b) componente W de la velocidad de la corriente [cm/s] y (c) velocidad de la corriente [cm/s] en Punta Angamos durante El Niño idealizado.	106
6.52. Comportamiento de la (a) TSM [°C], (b) componente W de la velocidad de la corriente [cm/s] y (c) velocidad de la corriente [cm/s] en Punta Angamos durante La Niña idealizada.	107
6.53. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 13 [hr] (b) transcurridas 26 [hr] (c) transcurrida 39 [hr] y (d) transcurridas 52 [hr] de la surgencia; correspondiente a La Niña idealizado.	108
6.54. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 13 [hr] (b) transcurridas 26 [hr] (c) transcurrida 39 [hr] y (d) transcurridas 52 [hr] de la surgencia; correspondiente a La Niña idealizado.	109

- 6.55. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 13 [hr] (b) transcurridas 26 [hr] (c) transcurrida 39 [hr] y (d) transcurridas 52 [hr] de la surgencia; correspondiente a La Niña idealizado. 110
- 6.56. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 7 [hr] (b) transcurridas 14 [hr] (c) transcurrida 21 [hr] y (d) transcurridas 28 [hr] de la surgencia; correspondiente a El Niño idealizado. . 111
- 6.57. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 7 [hr] (b) transcurridas 14 [hr] (c) transcurrida 21 [hr] y (d) transcurridas 28 [hr] de la surgencia; correspondiente a El Niño idealizado. . 112
- 6.58. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 7 [hr] (b) transcurridas 14 [hr] (c) transcurrida 21 [hr] y (d) transcurridas 28 [hr] de la surgencia; correspondiente a El Niño idealizado. . 113
- 6.59. Evolución temporal de la TSM en [°C], a partir de la condición inicial (a), transcurridas 3.3 [hr] (b) transcurridas 6.7 [hr] (c) transcurrida 10.0 [hr] y (d) transcurridas 13.3 [hr] de la surgencia; correspondiente a La Niña 1997. 116

6.60. Evolución temporal de la temperatura del perfil AB en [°C] a partir de
la condición inicial (a), transcurridas 3.3 [hr] (b) transcurridas 6.7 [hr] (c)
transcurrida 10.0 [hr] y (d) transcurridas 13.3 [hr] de la surgencia; corres-
pondiente a La Niña 1997

- 6.62. Evolución temporal de la TSM en [°C] a partir de la condición inicial (a), transcurridas 3.3 [hr] (b) transcurridas 6.7 [hr] (c) transcurrida 10.0 [hr] y (d) transcurridas 13.3 [hr] de la surgencia; correspondiente a El Niño 1998. 119
- 6.63. Evolución temporal de la temperatura del perfil AB en [°C] a partir de la condición inicial (a), transcurridas 3.3 [hr] (b) transcurridas 6.7 [hr] (c) transcurrida 10.0 [hr] y (d) transcurridas 13.3 [hr] de la surgencia; correspondiente a El Niño 1998.
- 6.64. Evolución temporal de la velocidad de la corriente en [m/s] a partir de la condición inicial (a), transcurridas 3.3 [hr] (b) transcurridas 6.7 [hr] (c) transcurrida 10.0 [hr] y (d) transcurridas 13.3 [hr] de la surgencia; correspondiente a El Niño 1998.
- 6.65. Serie temporales de las varaibles (a) TSM y (b) velocidad de la corriente y (c) componente W en Punta Angamos durante los periodos de noviembre El Niño 1997 (color azul) y La Niña 1998 (color cobre).
- A.1. Diagrama de flujo. Metodología de la obtención de malla batimétrica. . . . 130

B.1.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y regis- tros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña verano 2016 para componenete U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.2.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña verano 2016 para componenete U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.3.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña verano 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.4.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.5.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.6.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.7.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña invierno 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.8.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña invierno 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.9.	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña invierno 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.10	Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil

B.11	.Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
B.12	.Circulación hidrodinámica a partir de <i>Datos ADCP1</i> (en cobre) y registros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.1.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña verano 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.2.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña verano 2016 para componenete U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.3.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña verano 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.4.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.5.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.6.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña verano 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.7.	Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña invierno 2016 para componenete U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil
C.8.	Circulación hidrodinámica a partir de registros históricos (en cobre) y regis- tros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña invierno 2016 para componenete U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil

C.9. Circulación hidrodinámica a partir de registros históricos (en cobre) y regis- tros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña invierno 2016 para componente U de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil.	. 142
C.10.Circulación hidrodinámica a partir de registros históricos (en cobre) y re- gistros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa de fondo de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil	. 143
C.11.Circulación hidrodinámica a partir de registros históricos (en cobre) y regis- tros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa intermedia de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil.	. 143
C.12. Circulación hidrodinámica a partir de registros históricos (en cobre) y regis- tros de <i>Datos ADCP1</i> (en azul), correspondiente a la capa superficial de la campaña invierno 2016 para componente V de la velocidad de la corriente a través de (a) serie de tiempo y (b) gráfico cuantil - cuantil.	. 143
D.1. Funciones de transferencia para el punto FT1 (a) en el dominio del coefficiente de agitación, (b) en el dominio del coeficiente de dirección y (c) en el dominio de las direcciones con que llegan al punto de FT1	. 145
D.2. Funciones de transferencia para el punto FT2 (a) en el dominio del coeficiente de agitación, (b) en el dominio del coeficiente de dirección y (c) en el dominio de las direcciones con que llegan al punto de FT2	. 146

ÍNDICE DE TABLAS

3.1.	Valores recomendados por la ROM para la altura de rugosidad superficial z_0 y coeficiente de arrastre superficial.	11
4.1.	Nombre del proyecto, titular, tipo de efluente a través de emisario [E] o sifón [S], en coordenadas en UTM de puntos de descargas y toma de agua en la Bahía, caudales de entrada y salida en [m3/s] y temperatura [°C], salinidad [mg/l ó psu] o no aplica [N/A] descargada al mar.	24
4.2.	Periodo de mediciones para las campañas registradas por ADCP1 y ADCP2.	27
4.3.	Detalle de cartas náuticas utilizadas en la elaboración del dominio numérico.	28
5.1.	Set de datos utilizados en el modelo de propagación de oleaje e hidrodina- mico a partir de registros históricos, en el proceso de calibración y validación.	40
5.2.	Parámetros utilizados en el modelo MIKE 21 Spectral Waves FM. $\ .\ .\ .$.	42
5.3.	Parámetros utilizados en el modelo MIKE 3 Flow Model FM	44
5.4.	Descripción de casos, velocidad del viento, profundidad de cada estrato y perfil de temperatura, para Canal.	46
5.5.	Descripción de casos, velocidad del viento, profundidad de cada estrato y perfil de temperatura, para Bahía.	47
5.6.	Parámetros utilizados en la configuración del módulo de temperatura para el Canal	51
5.7.	Parámetros utilizados en la evaluación de surgencia en la Bahía	53
6.1.	Planos de la marea referidos al NRS, correspondiente la campaña de verano e invierno de <i>Datos Marea</i> y <i>Datos ADCP1</i>	59
6.2.	Incidencia de <i>Datos Oleaje</i> , dirección peak vs periodo peak en aguas pro- fundas. La ubicación del instrumento de medición se observa en la Figura (4.2)	64
6.3.	Incidencia de <i>Datos Oleaje</i> , dirección peak y altura de ola en aguas pro- fundas. La ubicación del instrumento de medición se observa en la Figura (4.2)	64
6.4.	Incidencia de <i>Datos Oleaje</i> , periodo peak y altura de ola	64
6.5.	Incidencia del viento Datos Viento, intensidad vs dirección en [%]	65

6.6.	Coeficiente de correlación entre de propagación de oleaje mediante construc- ción de borde con <i>Datos ADCP1</i> y mediciones de campaña <i>Datos ADCP1</i> .	69
6.7.	Medidas de tendencia central de parámetros de resumen entre propagación de oleaje a partir de registros históricos (simulado) y registros de <i>Datos</i> <i>ADCP1</i> (ADCP1), campaña verano	75
6.8.	Medidas de tendencia central de parámetros de resumen entre propagación de oleaje a partir de registros históricos (simulado) y registros de <i>Datos</i> <i>ADCP1</i> (ADCP1), campaña invierno	75
6.9.	Medidas de tendencia central de parámetros de resumen entre propagación de oleaje a partir de registros históricos (simulado) y registros de <i>Datos</i> <i>ADCP2</i> (ADCP2), campaña verano	76
6.10.	Medidas de tendencia central de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016	80
6.11.	Medidas de tendencia central de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016.	80
6.12.	Medidas de tendencia central de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> , MVO, M, O y V para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016. Valores en [cm/s]	82
6.13.	Medidas de tendencia central de la velocidad de la corriente a partir de modelación hidrodinámica de registros históricos y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016.	85
6.14.	Medidas de tendencia central de la velocidad de la corriente a partir de modelación hidrodinámica de registros históricos y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016	85
6.15.	Medidas de tendencia central de la velocidad de la corriente en [cm/s], a partir de modelación hidrodinámica de registros históricos con un nivel del mar constante (color negro) y variable (amarillo) para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016	86
6.16.	Parámetros utilizados en la obtención de la pendiente teórica de la surgencia a partir de la modelación del caso C26, de acuerdo con Niño (2013)	89
6.17.	Datos experimentales del número de Richardson y velocidad de entraiment normalizada por la velocidad de corte del viento desarrollados por Monis- mith (1986)	90

6.18.	Resumen de parámetros utilizados en el cálculo de velocidad del viento en [m/s], caso del Canal, tiempo de surgencia, t_s , en [s] y [h], diferencial de densidad Δ_{ρ} en [kg/m ³]; esfuerzo de corte del viento, τ_s , en [kg/ms ²]; velocidad de corte del viento, u_* , en [m/s]; número de Richardson, Ri , determinado por la ecuación (3.8); velocidad de entrainment, u_e , a partir de los modelos C1:24.	91
6.19.	Valores medios de las variables oceanográficas analizadas en Punta Angamos para La Niña 1997	115
6.20.	Valores medios de las variables oceanográficas analizadas en Punta Angamos para El Niño 1998	115
B.1.	Medidas de tendencia central de la componente U de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016	134
B.2.	Medidas de tendencia central de la componente V de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016	134
B.3.	Medidas de tendencia central de la componente U de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016	137
B.4.	Medidas de tendencia central de la componente V de la velocidad de la corriente a partir de modelación hidrodinámica de <i>Datos ADCP1</i> y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016	137
C.1.	Medidas de tendencia central de la componente U de la velocidad de la corriente a partir de modelación hidrodinámica de registros históricos y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016	138
C.2.	Medidas de tendencia central de la componente V de la velocidad de la corriente a partir de modelación hidrodinámica de registros históricos y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de verano 2016	138
C.3.	Medidas de tendencia central de la componente U de la velocidad de la corriente a partir de modelación hidrodinámica de registros históricos y registrada por <i>Datos ADCP1</i> para la capa superficial, intermedia y de fondo correspondiente a la campaña de invierno 2016	141

RESUMEN

La surgencia costera corresponde al afloramiento de masas de agua y sus propiedades físico - químicas desde aguas profundas a la superficie debido al movimiento de masas de aguas superficiales mar adentro. Se necesitan dos mecanismos para que ocurra surgencia; el viento que transfiere momentum a la superficie del océano y la rotación terrestre Marín et al. (1993), procesos que combinados en zonas costeras afectas por la geometría de la línea de costa, batimetría y estratificación del océano (Vergara, 1992), provocan el movimiento vertical de las aguas superficiales. Proceso favorecido por el transporte de Ekman, cuvas aguas se deflectan hacia la izquierda de la dirección predominante del viento. Dicho movimiento vertical de aguas superficiales, que implica cambios físicos y químicos de la zona eufótica, genera un vacío que es ocupado por aguas provenientes desde zonas más profundas las cuales son ricas en nutrientes, pero bajas tanto en temperatura como en oxígeno (Marín et al., 1993). La Bahía de Mejillones y en específico Punta Angamos es uno de los centros de surgencia más importantes en el norte de Chile. En este estudio se caracterizó la oceanografía y meteorología de la zona mediante la recopilación de datos de marea, oleaje y viento, además de campañas levantadas previamente por terceros utilizadas en el proceso de calibración y validación. Se utilizaron los modelos MIKE 21 FM: Spectral Waves y MIKE 3 FM: Hidrodynamics, que permitieron simular la propagación de oleaje y la hidrodinámica del dominio numérico, respectivamente.

Basado en lo anterior, el presente trabajo dio una respuesta hidrodinámica a la ocurrencia del afloramiento, identificando las condiciones necesarias para que dicho fenómeno fuese reproducido numéricamente. Para ello, se realizó un estudio basado en el comportamiento teórico a través de un caso ideal, donde se modeló un canal rectangular. Además, se desarrolló la simulación numérica de Bahía Mejillones, efectuando un análisis de sensibilidad a las variables meteorológicas que tienen relevancia en el proceso de surgencia. Adicionalmente, se evaluó un caso ideal y real de El Niño y La Niña permitiendo visualizar variaciones en velocidad de la corriente y temperatura.

Los resultados en el canal rectangular, indicaron que la configuración definida para el modelo hidrodinámico permitió contrastar el afloramiento con el calculo de la pendiente teórico propuesto por Niño (2013). Los modelos C1:24, con variaciones en el perfil de temperatura y en la velocidad del viento permitieron una comparación con experimentos desarrollados por Monismith (1986). Con respecto a la Bahía, el análisis de sensibilidad de la forzante viento indicó que a mayor magnitud, menor es el tiempo de surgencia. Se demostró que la fase cálida y fría modifican la proporción de las masas y variaciones en la TSM.