

FACULTAD DE INGENIERÍA

INGENIERÍA CIVIL OCEÁNICA

Evaluación de los parámetros de periodo y dirección que definen las tormentas extremas y comparación de métodos de estimación de cargas por oleaje en estructuras verticales en Chile. Caso de estudio tormenta julio 2013

RODRIGO DANILO LEAL CORNEJO

MEMORIA PARA OPTAR AL TÍTULO DE

INGENIERO CIVIL OCEÁNICO

PROFESOR GUÍA:

SR. PATRICIO MONÁRDEZ SANTANDER

SEPTIEMBRE DE 2016

Universidad De Valparaíso

FACULTAD DE INGENIERÍA

INGENIERÍA CIVIL OCEÁNICA

SANTIAGO

"Evaluación de los parámetros de periodo y dirección que definen las tormentas extremas y comparación de métodos de estimación de cargas por oleaje en estructuras verticales en Chile. Caso de estudio tormenta julio 2013"

Rodrigo Danilo Leal Cornejo

COMISIÓN REVISORA	NOTA	FIRMA
Patricio Monárdez S.		
José Beyá M.		
Patricio Winckler G.		

DECLARACIÓN

Este trabajo, o alguna de sus partes, no han sido presentados anteriormente en la Universidad de Valparaíso, institución universitaria chilena o extranjera u organismo de carácter estatal, para evaluación, comercialización u otros propósitos. Salvo las referencias citadas en el texto, confirmo que el contenido intelectual de este Proyecto de Título es resultado exclusivamente de mis esfuerzos personales.

La Universidad de Valparaíso reconoce expresamente la propiedad intelectual del autor sobre esta Memoria de Titulación. Sin embargo, en caso de ser sometida a evaluación para los propósitos de obtención del Título Profesional de Ingeniero Civil Oceánico, el autor renuncia a los derechos legales sobre la misma y los cede a la Universidad de Valparaíso, la que estará facultada para utilizarla con fines exclusivamente académicos.

PARA EL TREMENDO NILO

EN EL FIN DE ESTA ETAPA QUE TENÍA PENDIENTE, QUERÍA AGRADECER A TODAS LAS PERSONAS

QUE ME APOYARON A LO LARGO DE MI CARRERA.

QUIERO AGRADECER A MI PILAR FUNDAMENTAL, MI FAMILIA; A MI MADRE NANCY, MI PADRE

JAIME Y MI HERMANA NATALIA POR TODO SU ESFUERZO, PREOCUPACIÓN Y CONFIANZA EN ESTE

LARGO PROYECTO. SIN SU APOYO ESTO NO PODRÍA HABER SIDO POSIBLE.

AGRADEZCO A MI POLOLA DAIANA POR SER MI MOTIVACIÓN, DARME LA FUERZA Y LA ÚLTIMA
GOTA DE COMBUSTIBLE PARA DAR ESTE ÚLTIMO GRAN PASO.

A MIS TÍOS HUGO, SANTIAGO Y MAURICIO Y PRIMO ALEXIS, POR SU APOYO EN LOS MOMENTOS COMPLEJOS DE MI CARRERA.

A MI PROFESOR GUÍA PATRICIO MONÁRDEZ, QUIEN SIN TENER NINGUNA OBLIGACIÓN CONMIGO ME BRINDÓ APOYO Y DEDICACIÓN EN EL DESARROLLO DE ESTA MEMORIA.

A MIS GRANDES AMIGOS DE LA U, MIS AMISTAITAS; SEBASTIÁN CONTRERAS, EDUARDO GONZÁLEZ, DANIEL ROJAS Y CÉSAR ESPARZA POR SU AMISTAD, COMPAÑERISMO Y PREOCUPACIÓN.

AL TREMENDO GRUPO DE ESTUDIO CON LOS QUE COMPARTÍ EL ÚLTIMO PROCESO DE LA CARRERA DONDE SE FORJARON GRANDES DISCUSIONES Y MUCHAS EXPERIENCIAS QUE ME HICIERON CRECER PROFESIONALMENTE. GRACIAS BROCHAS; CLAUDIO MEZA, ARIEL GALLARDO Y JANISSE FERRADA.

A MATÍAS QUEZADA POR SU PREOCUPACIÓN Y AYUDA EN EL DESARROLLO DE ESTA MEMORIA.

A BAIRD & ASSOCIATES S.A, POR FACILITAR EL USO DE DATOS PARA LA REALIZACIÓN DE ESTE TRABAJO.

MUCHAS GRACIAS A TODAS LAS PERSONAS QUE COMPARTIERON CONMIGO EN LA UNIVERSIDAD

DE VALPARAÍSO Y FUERA DE ESTA, SIN DUDA TAMBIÉN SON PARTE DE ESTO.

SIN SACRIFICIO NO HAY VICTORIA...

ÍNDICE

1	R	esume	en	1
2	In	troduc	ción	2
3	O	bjetivo	os	3
	3.1	Obj	etivo General	3
	3.2	Obj	etivos Específicos	3
4	Al	cance	s	4
5	R	evisiór	n bibliográfica	5
	5.1	Ole	aje	5
	5.	1.1	Teorías de Oleaje	7
	5.	1.2	Climatología del Oleaje en Chile	8
	5.	1.3	Rotura	
	5.	1.4	Oleaje Extremo	15
	5.	1.5	Metodología de Valores Extremos – Alturas de Oleaje	
	5.2	Obi	ras Marítimas	
	5.	2.1	Clasificación y Tipología de Obras Marítimas	
	5.3	Car	gas de oleaje	
	5.	3.1	Carga por Oleaje sobre Estructuras Verticales	
	•	3.2 ertical	Formulaciones Utilizadas comunmente en el Diseño de	Estructuras
	5.4	Daí	ños Producidos en Muros verticales	36
6	C	aso de	e aplicación	38
	6.1	Car	acterización Zona de Estudio	41
	6.	1.1	Ubicación Puerto de Antofagasta	41
	6.	1.2	Batimetría Antofagasta	42
	6.	1.3	Oleaje Antofagasta Aguas profundas	
		1.4	Mareas Puerto de Antofagasta	
	6.2	Aná	álisis Tormenta	
	6.	2.1	Condiciones Meteorológicas	
		2.2	Condiciones de Oleaje	
		2.3	Evaluación periodo de retorno tormenta	
	6.3		inición Altura de Ola de Diseño	
		3.1	Análisis de Olas Extremas en Aguas Profundas	

	6.3.	2 Selección Periodo y Dirección	. 61
6	.4	Estimación de Fuerzas	. 62
	6.4.	1 Propagación de Oleaje al Pie de la Estructura	63
	6.4.	2 Análisis de fuerzas	. 64
6	.5	Análisis de Sensibilidad e Interpretación de Resultados	. 74
	6.5.	1 Sensibilidad Metodología Sainflou (1928)	. 74
	6.5.	2 Sensibilidad Metodología Minikin (1963)	. 75
	6.5.	3 Sensibilidad Metodología de Goda (1994)	. 76
6	.6	Análisis de Estabilidad	. 78
7	Rec	omendaciones de uso formulaciones	. 80
8	Con	clusiones finales	. 82
9	Bibl	iografía	. 84
10	Ane	xos	. 86
ĺΝ	DIC	E DE FIGURAS	
•		-1: Clasificación de las ondas de superficie en función de la energía y frecuenci	
F ig	ura 5	-2: Validez de diferentes teorías de olas	7
_		-3: Espectro Bi-Dimensional costas chilenas (energía en m²/s)	
•		-4: Tipos de rotura	
_		-5: Ilustración métodos de selección de tormentas	
		-6 : Diagrama de clasificación de obras marítimas	
•		-7 : Tipos de diques verticales	
		-8: Sección tipo dique vertical	
_		-9: Sección tipo dique vertical.	
•		-10: Muro vertical con frente perforado	
·		-11: Pantalla de hormigón ranurada con pilotes de refuerzo	
·		-12: Pantallas de tablestacas.	
_		-13 : Identificación de fuerzas sobre muros verticales, para olas rompientes y tes.	
Fig	ura 5	-14 : Mapa de identificación de cargas sobre estructuras verticales	. 29
Fig	ura 5	-15: Distribución de presiones Sainflou (1928)	. 31
Fig	ura 5	-16: Diagráma de presiones Minikin (1963)	. 32
Fig	ura 5	-17: Esquema de aplicabilidad de formulaciones	. 34

Figura 5-18 : Distribución de presiones Goda	34
Figura 5-19: Falla típicas en muros verticales	37
Figura 6-1: Características molo de abrigo Antofagasta. Adaptación Lira (1933)	39
Figura 6-2: Ubicación sectores dañados Puerto Antofagasta	39
Figura 6-3: Arranque molo principal dañado por marejadas Puerto Antofagasta	40
Figura 6-4: Pérdida bloques sector faro	40
Figura 6-5 : Ubicación Puerto de Antofagasta	41
Figura 6-6: Batimetría Puerto de Antofagasta	42
Figura 6-7: Perfiles Antofagasta	43
Figura 6-8: Perfiles Antofagasta	43
Figura 6-9: Rosa de dispersión de periodos. Antofagasta	46
Figura 6-10. Carta Sinóptica 01 y 02 de julio de 2013, respectivamente	48
Figura 6-11. Carta de viento 1 y 2 de julio de 2013, respectivamente	49
Figura 6-12: Presión atmosférica faro Punta Ángeles	49
Figura 6-13: Intensidad de viento Punta Ángeles	50
Figura 6-14. Carta de viento y sinóptica 14 de julio de 2013	51
Figura 6-15: Ubicación geográfica boyas	52
Figura 6-16: Comparación marejadas entre marejada julio 2013 versus mayor tormenta 30 años y oleaje con 100 años de periodo de retorno para Antofagasta	
Figura 6-17: Puntos de extracción Antofagasta	57
Figura 6-18: Ubicación nodos de extracción Antofagasta y Valparaíso	57
Figura 6-19: Distribución de presiones Sainflou (1928)	66
Figura 6-20. Distribución de presiones Goda	71
Figura 6-21: Ilustración de Presiones Totales sobre Muro	72
Figura 6-22. Distribución de presiones Goda	72
Figura 6-23: Ilustración dirección de incidencia	76
Figura 6-24: Diagrama de cuerpo libre de fuerzas que actúan sobre un muro	79
Figura 10-1 : Gráfico para evaluar el coeficiente Ks	95
ÍNDICE DE TABLAS	
Tabla 5-1: Clasificación de ondas según periodo	5
Tabla 5-2: Tipos de Rotura según número de Iribarren	
Tabla 5-3: Tipos de Rotura según número de Iribarren en rotura	
Tabla 5-4: Metodología de selección periodos y dirección	
. azia ee.codologia de colocion ponedo y directioni	'

Tabla 5-5: Obras marítimas y objetivos2
Tabla 5-6: Resumen formulaciones existentes para la determinación de fuerzas de oleaj en estructuras verticales
Tabla 6-1: Tabla de incidencia dirección peak vs. Altura significativa en aguas profundas 4
Tabla 6-2: Tabla de incidencia altura significativa vs. Periodo peak4
Tabla 6-3: Fechas de inicio y término de tormenta5
Tabla 6-4: Valores máximos de tormenta en aguas profundas5
Tabla 6-5 : Listado tormentas extremas Antofagasta en aguas profundas5
Tabla 6-6 : Correlación distribuciones de probabilidad Weibull y Gumbel5
Tabla 6-7 : Periodos de retorno Antofagasta aguas profundas5
Tabla 6-8: Resumen periodos de retorno6
Tabla 6-9: Parámetros Caso A6
Tabla 6-10: Parámetros Caso B6
Tabla 6-11: Parámetros de evaluación de cargas6
Tabla 6-12: Parámetros de evaluación de cargas (peak tormenta julio 2013)6
Tabla 6-13: Alturas de ola al pie de la obra frente al cabezo molo de abrigo puerto de Antofagasta
Tabla 6-14: Presiones obtenidas según altura de diseño. Promedio registro tormentas d aguas profundas6
Tabla 6-15: Presiones obtenidas según altura de diseño. Análisis de funciones d transferencia6
Tabla 6-16: Presiones totales método de Sainflou. Caso tormenta6
Tabla 6-17: Fuerzas y momentos totales. Promedio registro tormentas de agua profundas6
Tabla 6-18: Fuerzas y momentos totales. Análisis de funciones de transferencia
Tabla 6-19: Presiones totales método de Minikin. Caso tormenta7
Tabla 6-20: Presiones, fuerzas y momentos totales. Promedio registro tormentas de agua profundas7
Tabla 6-21: Presiones, fuerzas y momentos totales. Análisis de funciones de transferenci 7
Tabla 6-22:Presiones, fuerzas y momentos totales método de Goda extendido. Castormenta7
Tabla 6-23: Factores de seguridad según ROM 05/947
Tabla 6-24: Resumen factores de seguridad propuestos en la literatura7
Tabla 6-25: Factores de seguridad casos analizados7
Tabla 7-1: Formulaciones propuestas en la literatura más reciente8

Tabla 10-1: Coeficientes empíricos de la formulación de desviación estándar para para	ara
eventos extremos (Goda 1988)	89
Tabla 10-2: Niveles de confianza para valores de altura de olas extremas	89

1 RESUMEN

Asumiendo que la altura de ola de diseño está condicionada por la correcta selección del periodo y dirección, se estudiaron dos escenarios para elegir estos parámetros; elección de acuerdo al promedio del registro de tormentas de aguas profundas y a partir del análisis de funciones de transferencia, encontrando que al propagar alturas de ola con periodos más largos existe mayores cargas sobre las estructuras, aumentando el fenómeno de asomeramiento.

Al comparar los escenarios descritos anteriormente, se obtuvieron diferencias hasta del 30%, siendo las más altas aquellas evaluadas con parámetros seleccionados a partir de las funciones de transferencia o periodos más largos.

En referencia a la tormenta de inicios de julio de 2013, ésta presentó alturas de ola con periodos de retorno inferiores a 100 años, considerando 30 años de datos de oleaje. Por lo tanto, los daños causados son principalmente por incrementos de fenómenos relacionados con el periodo. De acuerdo a lo anterior, se utilizó este evento para realizar los análisis.

Conocidas las diferencias existentes en la selección del periodo para escoger la altura de ola de diseño, se compararon las metodologías de determinación de cargas en estructuras verticales, verificando que existen aumentos en las en las solicitaciones de al menos un 30%, así como también cambios en los factores de seguridad (vuelco y deslizamiento). Por lo tanto, a mayor periodo mayor serán las fuerzas sobre la estructura.

Finalmente, se recomienda seleccionar los parámetros de periodo y dirección para determinar la ola de diseño a partir de las funciones de transferencia, ya que se pueden visualizar los efectos que causará en la costa al propagar el oleaje, en función al coeficiente de agitación.