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ABSTRACT  

A series of 1D cross-sectional averaged theories of long waves in channels have been developed (e.g. Peregrine, 1968; 
Teng & Wu, 1997). However, none of them is able to account simultaneously for i) arbitrary and asymmetric cross-
sections with respect to the direction of wave propagation, ii) channel cross-sections that can change appreciatively within 
a wavelength, iii) curvature in the horizontal plane, iv) branching and v) viscous dissipation from the bottom boundary 
layer. In natural streams, however, riverbanks are not straight, channels can often have bends or branches and the cross-
section may be highly non-uniform. Examples of such are found in tsunami waves traveling along rivers, ocean tides in 
fjord systems or storm surge entering harbors. In this paper we summarize part of the authors' work (Winckler, 2015; 
Winckler & Liu, 2015) to account for some of these phenomena. 
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1. LONG WAVE EQUATIONS FOR A CURVED CHANNEL 

A generalization of the cross-sectional averaged 1D long wave model for straight channels derived by Winckler and Liu 
(2015) is proposed herein to account for curvature in the horizontal plane. The derivation is based on a specific set of 
orthogonal curvilinear coordinates, arbitrarily defined from one of the channel's sidewalls. 3D equations of motion for 
inviscid and incompressible fluid in this curvilinear coordinate system are integrated over a channel cross-section. After 
invoking a perturbation expansion, the resulting 1D equations are expressed in terms of the cross-sectional quantities. The 
new equations are of the Boussinesq form, implying that frequency dispersion is small but not negligible, and balanced by 
nonlinearity. The equations explicitly contain the curvature and reduce to governing equations for straight channels 
derived by Winckler and Liu (2015).  

The main geometrical assumptions are i) that the local radius of curvature is much larger than the characteristic 
wavelength, ii) the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical 
wavelength, iii) the sidewall slope at the still water level is order  ( ) and iv) changes in the geometry along the channel 

can change significantly within a wavelength. 

Consider a channel of arbitrary cross-section with a specific curvilinear coordinate system ( ̂  ̂  ̂) depicted in Figure 1. 

Here  ̂ is the arclength measured along the right sidewall at still water level,  ̂ denotes the distance measured orthogonally 

into the flow domain and  ̂ is the vertical coordinate pointing upwards;  ̂    denotes the still water level (SWL). Hats 

represent dimensional variables. The  ̂-axis is required to be continuous and smooth and the channel is curved only on the 

horizontal   ̂   ̂ plane. The transformation between Cartesian coordinates ( ̂  ̂  ̂) and curvilinear orthogonal coordinates 

for an arbitrary point at the still water level within the fluid domain   ( ̂  ̂  ̂   ) is (Dressler, 1978) 

 

 ̂( ̂  ̂)   ̂   ̂                          ̂( ̂  ̂)   ̂   ̂      [1] 

 

where    is a point at  ̂   ̂( ̂)  ̂   ̂( ̂) on the reference curve,  ( ̂) is the angle between  ̂ and the right sidewall, 

measured counterclockwise, The velocity  ̂  ( ̂  ̂  ̂) is defined by components in the longitudinal  ̂, spanwise  ̂, and 
vertical direction  ̂, respectively. The curvature is defined by  ̂       ̂, where  ̂    for concave channels and  ̂    for 

convex channels.  

The curvilinear coordinate system is required be one to one, implying every element ( ̂  ̂  ̂) corresponds to exactly one 

element of ( ̂  ̂  ̂). For a convex channel with  ̂   , no restriction is required. For a concave channel with  ̂    however, 

any point within the fluid domain needs the additional requirement of  ̂   ̂, where  ̂ is the radius of curvature. Thus, the 

channel width must be smaller than the radius of curvature, i.e.  ̂   ̂, where  ̂  is the surface width of the channel at the 
quiescent state. 
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Figure 1. Curvilinear coordinate system used in the derivation of the theory. 

To describe the problem in terms of dimensionless variables, the characteristic wavelength  ̂  is employed as the length 

scale in the longitudinal direction, the characteristic unperturbed water depth   ̂  as the length scale for the vertical and 

spanwise directions, the typical wave amplitude  ̂  is used to account to effects of the free surface on the motion and  ̂  is 

the typical radius of curvature. The non-dimensional parameters 

 

   ̂   ̂                            ̂   [2] 

 

are introduced as measures of the frequency dispersion and nonlinearity, respectively. The Boussinesq approximation is 

assumed, thus  ( )   (  )   . The scalings used in Winckler and Liu (2015) are applied herein. The only new scaling is 

introduced for the curvature,  ̂     ̂, as follows 

 

 ̂      ̂     [3] 

 

where   accounts for the degree of curvature of the channel with respect to the wavelength. For     the radius of 

curvature is smaller than that for    ; in both cases, however, the radius of curvature is smaller than the wavelength. 

Variables are scaled by different lengths scales, which are considered to follow the relations  ̂   ̂   ̂   ̂ .  

The 3D flow problem is reduced to 1D by integrating the equations of continuity and conservation of momentum on the 
cross-sectional area. For the sake of brevity, the derivation is omitted herein but can be reviewed in Winckler (2015). The 
channel averaged conservation of mass, in dimensionless form, becomes 
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[4] 

 

where  ̃ is the spanwise averaged free surface elevation, 〈 〉 is the cross-sectional averaged longitudinal velocity, 

 

  ( )  ∫  (   )  
  

 

 [5] 

 

is the cross-sectional area at the quiescent state, with   being the local depth, and     is the sidewall slope at the still 

water level. The coefficients   and   stemming from the curvature are 
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 [7] 

 

where    and    are obtained from boundary value problems for each cross-section (equations 3.27 to 3.33 in Winckler 

and Liu's, replacing   by  ). The symbol  ̆ represents the depth averaging of any function  . Note that for uniform symmetric 

channels,      .  
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The channel averaged equation of conservation of momentum is 

 

(           )
 〈 〉
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  〈 〉
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  〈 〉

     
  (   ) [8] 

 
where the term associated with   represents the correction to the local acceleration and the term associated with   

denotes the wave decay or amplification caused by the variation of the cross-sectional geometry along the channel 
(Winckler and Liu, 2015). Both terms are negligible when the channel variations in the longitudinal direction become very 
small. The term associated with   represents the frequency dispersion effects, which remain important even when the 

channel variations in the longitudinal direction are small. These coefficients are obtained once    and    are solved for 

each cross-section (equations 3.40 to 3.42 in Winckler and Liu's, replacing   by  ).  

In the authors' view, equations [4] and [8] provide a robust theory in a field where existing theories are heuristically derived 
(Fenton and Nadler, 1995) or applicable only to specific cases (Nachbim and da Silva, 2012). Fenton and Nadler (1995), 
for example, used a control volume approach without an explicit treatment of the kinematic and dynamic conditions at the 
free surface to derive a set of non-dispersive long wave equations for curved waterways. Nachbim and da Silva (2012), on 
the other hand, proposed a curvilinear Boussinesq model based on the technique of conformal mapping, to study the 
evolution of solitary waves on very specific geometries. 

 

2. LONG WAVE EQUATIONS FOR A STRAIGHT CHANNEL 

For a straight channel, the   by   coordinates coincide, thus equations [4] and [8] are simplified to 
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These equations coincide with those derived for a Cartesian coordinate system in Winckler and Liu (2015), in which the 
effects of rapid changes in the cross-sectional geometry occurring within a wavelength are included. These effects were 
not captured in earlier theories (e.g. Peregrine, 1968; Teng and Wu, 1997). 

 

3. VISCOUS EFFECTS 

Winckler (2015) extended Liu and Orfila's (2004) approach to quantify the viscous effects inside the bottom boundary layer 
for the case of channels with arbitrary cross-section. The viscous effects in the boundary layer induce mass fluxes into the 
core region where Boussinesq equations are solved. Thus, the cross-sectional averaged equation for conservation of 
mass is modified by adding the mass flux across the channel boundary, which has the form of a convolution integral.  

For a straight channel with a slowly-varying cross-section, the continuity equation [9] becomes 
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[11] 

 

where     ̂  ̂( ̂ ̂ )
   

 represents a dimensionless measure of viscous effects, with  ̂           being the kinematic 

viscosity of water. Here, we assume    (     ), so that the viscous effects are slightly weaker than the frequency 
dispersion and nonlinear effects, but not too small to be neglected. The cross-sectional averaged momentum equation 
remains unchanged. This analytical approach to quantify the viscous effects is solely appropriate for small-scale laboratory 
experiments where the boundary layer remains laminar. Other cases requiring the implementation of turbulent models or 
bottom friction are not covered herein. 

 

4. JUCTIONS 

Winckler (2015) derived compatibility conditions to solve for junctions in branching channels. To derive these conditions, 
the physical region is divided into a near and a far field according to the dominant scales in each region. This is essentially 
similar to the approach used by Mei et al. (2005) to solve the wave propagation on a straight depth discontinuity. The 
detailed derivation can be reviewed in Winckler (2015).  
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To a leading order error of  ( ), corresponding to a linear nondispersive wave theory, the compatibility conditions are very 
simple. Indeed, the equation of conservation of mass can be expressed as 

 

∑  
( )

   

   

〈  〉
( )  ∑   

( )

    

   

〈  〉
( )   ( )  [12] 

 

where     and      corresponds to the number of inlets and outlets at the junction, 〈  〉
( ) is the cross-sectional averaged 

longitudinal velocity normal to each cross-section and   
( )

 the surface width at the quiescent state on each branch. The 

conservation of momentum, on the other hand, is  

 

    ( )  [13] 
 
Implying that  ̃ has the same value for all branches at the junction. Thus, to the lowest order of approximation, conditions 

[12] and [13] imply that on the junction, the surface elevation is the same for the concurrent branches and the fluxes sum 
up to zero. This first order approximation loses detailed information on the wave features but retains the leading order 
effects on flow features. It also predicts that the angle of the branches is irrelevant for the flow properties across the 
junctions. 

If i) the typical length scale of the junction is much smaller than the propagation distance, and ii) the wave amplitude is 
relatively small, then nonlinear and dispersive effects may be assumed negligible in the vicinity of the junction. Under 
these conditions, compatibility conditions [12] and [13] can be used in conjunction with the Boussinesq-type equations 
derived in the earlier sections. Such scheme is useful for modeling long waves in channel networks. 

 

5. APPLICATIONS 

In this talk, the capability of the present set of modeling tools will be discussed by means of three examples, namely i) a 
solitary wave on a shoaling beach, ii) a solitary wave on a curved transition and iii) a solitary wave passing through a 
junction. The first example is explained in Winckler and Liu (2015), thus omitted herein, while the third is still under 
development. Only the second example is detailed herein. 

The influence of curvature in the wave flow is explored by means of two channels with curved transitions. The so called 
concave-convex channel consists of an initial straight section followed by a concave transition between points A and M, a 
convex transition between points M and B and a final straight section (Figure 2a). In the convex-concave channel, the 
transition is reversed (Figure 2b).  

 
Figure 2. a) concave-convex channel b) convex-concave channel. 

Rectangular uniform channels with a constant width of        and a depth of             are considered. The 

governing equations [4] and [8], in dimensional form (hats are omitted for dimensional variables), are reduced to  
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where the terms containing           due to the uniform cross-section, and        . These equations are solved 

numerically by using the fourth order Adams-Bashforth-Moulton method (Wei and Kirby 1995). An incoming wave with 
amplitude            m and a typical wavelength of     (   )  is considered. Nonlinearity and frequency dispersion 

are characterized by         (   ) and         (   ), thus the Boussinesq approximation is fulfilled. The 

geometry is defined in local     coordinates with an origin at the beginning of the transitions (i.e. points A and C in Figure 

2).  
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The transition for the channel in Figure 2a has a sinusoidal shape of the form  

 

  {
    

      (       )         
        

 

 

[16] 

where   and    are chosen to satisfy the assumption         . Specifically,         and           
         . The curvature is given by 
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[17] 

To map the curvature into the curvilinear coordinate system,  ( ), the arc length is defined by 

 

 (   )  ∫   
 

 
 ∫ √  (  )

   
 

 
, 

 
[18] 

which is an elliptic integral of the second kind with no analytic solution, and is solved through numerical integration. The 
curvature as a function of the   coordinate is depicted in Figure 3a. Note that the transition begins at       , whereas 

the in local coordinates, it starts at      . 

 

 

Figure 3. a) Curvature along a concave-convex channel (red), a straight channel (black) and a convex-concave channel (blue). b) 
maximum amplitude at each point during the simulation. Relevant points in Figure 2 are included. 

The maximum amplitude at each point during the simulation is depicted in Figure 3b. It is observed that the point where 
the curvature effect on surface elevation is more pronounced (      ) occurs downstream from the point with maximum 

curvature (      ). This implies that the effect of curvature is delayed as a consequence of the second order terms in 

the governing equations. Downstream of the transition (       ), the maximum amplitude for all channels converges to 

that of the initiation, implying that the curvature effects are reversible.  

Figure 4 shows surface profiles a) between the start and the midpoint of the transition where the curvature effect is more 
pronounced, b) near the midpoint and c) after the transition's end. Panel a) shows that waves in the concave-convex 
channel have propagated only through the concave section with a slight increase of the wave amplitude and phase speed 
(with respect to the straight channel). For the convex-concave channel, on the other hand, waves have traveled through 
the convex section and the effects are opposite in magnitude as a consequence of the change of sign in the curvature. 
These small differences in wave amplitude between cases are explained due to the fact that waves have traveled only 
about two wavelengths along the transition, so cumulative effects due to curvature are small. Panel b) shows that near the 
middle of the transition, the amplitude is almost equal in all channels but the position of the peak is slightly downstream for 
the concave-convex channel (         ) than for the convex channel (         ), as a consequence of the different 

phase speeds in both cases. Panel c) shows that the main waves have almost recovered the original form at the 
transition's end for all cases, with only slight differences in the trailing waves.  
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Figure 4. Surface profiles for a concave-convex channel (red), a straight channel (black) and a convex-concave channel (blue). Results a) 
where the curvature effect is more pronounced, b) at the center and c) at the end of the transition. 

 

It is concluded that i) the solution for the wave field in a uniform rectangular channel with curvature in the horizontal plane 
is locally affected by the magnitude and sign of the curvature, ii) curvature effects are reversible in channels that recover 
the alignment after a sinusoidal transition and that iii) cumulative effects of curvature, such as the generation of trailing 
waves, appear to be minor.  The generalization of all or some of these features to non-symmetric transitions or channels 
of non-symmetric cross-sections cannot be done at this stage. 

The theory for curved channels is under development and has still some issued to be resolved (Winckler, 2015). For 
example, to the order of approximation used, the perturbation solution does not capture the free surface tilting due to 
curvature; however, the fact that the coordinate system traces the channel is indeed an implicit inclusion of the curvature. 
The solution for the cross-sectional averaged quantities, on the other hand, depends on the position of the coordinate 
system used (e.g. left sidewall, center of right sidewall). This result, though counterintuitive, can be explained due to the 
fact that the unknown quantities,  ̃ and 〈 〉, do not represent the same cross-section (see Winckler, 2015 for a deeper 

explanation). 

 

6. CONCLUSIONS 

A set of tools intended to improve the physical understanding of long wave propagation in channels is presented in this 
talk. A new theory for weakly-nonlinear weakly-dispersive waves in curved channels based on a curvilinear orthogonal 
system is first derived. This theory is a generalization of the theory for a straight channels by Winckler and Liu (2015), and 
accounts for arbitrary cross-sections that can change appreciatively within a wavelength. Compatibility conditions for 
junctions are also derived for linear nondispersive waves. Under the assumptions that junctions are relatively small 
compared to the wavelength and that waves are small, these conditions can be combined with the new theory for curved 
channels to model wave propagation in complex network systems. Finally, the inclusion of viscous effects stemming from 
the bottom boundary layer is useful to characterize long wave patterns in small scale experiments. 

The new set of tools can be used in a variety of problems. As an example, for landslide tsunami in fjords, travel-times and 
maximum wave heights can be rapidly estimated from 1D governing equations, making these tools suitable for warning 
systems. Other applications are river dynamics, flood and tidal waves in estuaries, among other phenomena. 
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