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A cross-sectionally averaged one-dimensional long-wave model is developed. Three-
dimensional equations of motion for inviscid and incompressible fluid are first
integrated over a channel cross-section. To express the resulting one-dimensional
equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-
averaged free-surface elevation, the characteristic depth and width of the channel
cross-section are assumed to be smaller than the typical wavelength, resulting in
Boussinesq-type equations. Viscous effects are also considered. The new model
is, therefore, adequate for describing weakly nonlinear and weakly dispersive
wave propagation along a non-uniform channel with arbitrary cross-section. More
specifically, the new model has the following new properties: (i) the arbitrary channel
cross-section can be asymmetric with respect to the direction of wave propagation,
(ii) the channel cross-section can change appreciably within a wavelength, (iii) the
effects of viscosity inside the bottom boundary layer can be considered, and (iv) the
three-dimensional flow features can be recovered from the perturbation solutions.
Analytical and numerical examples for uniform channels, channels where the
cross-sectional geometry changes slowly and channels where the depth and width
variation is appreciable within the wavelength scale are discussed to illustrate the
validity and capability of the present model. With the consideration of viscous
boundary layer effects, the present theory agrees reasonably well with experimental
results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for
converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006,
pp. 181–190) for a uniform channel with a sloping beach. The numerical results for
a solitary wave propagating in a channel where the width variation is appreciable
within a wavelength are discussed.
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1. Introduction
Numerical modelling of landslide-generated tsunamis in a complex fjord system

is a challenging task. It can be achieved by coupling tsunami generation models,
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open-fjord propagation models and near-shore inundation models (Harbitz et al.
2014). In the wave generation (source) region the interaction between the landslide
and the water body is important and is extremely complex due to wave breaking,
turbulence and air entrainment. The leading waves can be affected by frequency
dispersion and the nonlinearity may also be considerable when the landslide speed
is large. As waves propagate from the source region, wave amplitude decays as the
consequence of directional spreading and increasing water depth. Hence, waves evolve
into a regime where both frequency dispersion and nonlinearity are weak, but not
negligible. The corresponding flow structures tend to become almost one-dimensional
with wavefronts that are approximately perpendicular to the main axis of the fjord.
Therefore, the main flow features maybe captured by a set of cross-sectionally
averaged equations for weakly nonlinear and weakly dispersive waves. This flow
regime is the focus of the present investigation.

Several one-dimensional theories of weakly nonlinear and weakly dispersive waves
in a straight channel have been developed (Peregrine 1968, 1969; Shen 1969; Fenton
1973; Shuto 1974; Miles 1979; Chou 1981; Kirby & Vengayil 1988; Teng 1990, 2000;
Teng & Wu 1992, 1994, 1997). It is also noted that in predicting flood flows in
rivers, one-dimensional Saint-Venant models have been developed for channels with
irregular geometries (e.g. Jacovkis & Tabak 1996). However, none of these theories
is able to account simultaneously for arbitrary cross-sections, appreciable changes of
channel geometry within the wavelength scale in the direction of wave propagation
and viscous boundary layer effects. The objective of this paper is then to present a
long-wave model, which includes all the missing features mentioned above. The new
model is intended to give insights to propagation of landslide-generated tsunamis in
fjords, estuaries or channels. Specifically, it can be used as a tool to quickly forecast
wave amplitudes and time of arrival of the leading waves at a coastal site.

Essentially the present model is an extension of the work developed by Teng &
Wu (1992, 1994, 1997), referred as TW97 hereafter, to account for non-symmetric
cross-sectional geometries where changes in the width and depth are important within
the wavelength. The three-dimensional governing equations of motion for inviscid
and incompressible fluid are first reduced to one-dimensional cross-sectional-averaged
equations, describing the dominant wave motions along the longitudinal axis of the
channel. The Boussinesq approximation is then used so that nonlinearity and frequency
dispersion are relatively small, but of the same order of magnitude. Spanwise and
vertical velocities are also assumed much smaller than the longitudinal velocity.
Following Liu & Orfila’s (2004) approach, the effects of the viscous boundary
layer along the channel wall are included in the resulting governing equations. Its
application is found to be adequate for laboratory-scale measurements. Channel
curvature and branching are neglected in the present derivation. Although forcing
caused by spatial gradients of the atmospheric pressure or a moving bottom can be
easily included in the governing equations (see Teng & Wu 1992), they are also not
considered herein.

This paper is structured as follows. The following section introduces the basic
governing equations and the scaling of the potential theory. In § 3, the cross-
sectional-averaged equations for waves propagating in the longitudinal direction are
obtained after invoking the Boussinesq approximation. Analytical expressions for the
spanwise and vertical velocities, pressure and surface elevation on a cross-sectional
plane are also proposed. In § 4, analytical and numerical examples for uniform
channels, channels where the cross-sectional geometry changes slowly and channels
where the depth and width variation is appreciable within the wavelength scale are
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FIGURE 1. Coordinate system and geometric parameters of the channel cross-section.

presented. Numerical schemes developed to solve the Boussinesq-type equations for
the longitudinal flow and boundary value problems at each cross-section are briefly
discussed. Section 5 provides a discussion on the applicability and limitations of the
present model.

2. Governing equations

In this paper long-wave propagation in a straight channel with a non-uniform cross-
section is considered. As depicted in figure 1, the channel cross-section is described
by ẑ=−ĥ(x̂, ŷ), where ẑ is the vertical coordinate pointing upwards and ẑ= 0 denotes
the still water level (SWL). The x̂-axis is the longitudinal direction, while the ŷ-axis
represents the spanwise direction. The channel boundaries are rigid and impermeable.
The channel cross-section geometry can alternatively be defined by ŷ = ŷl(x̂, ẑ) and
ŷ = −ŷr(x̂, ẑ) for the left and right channel bottom boundaries, measured from the
channel axis (ŷ = 0). The intersections between the SWL and the channel boundary,
describing the still water shorelines, are defined by

ŷ= ŷl(x̂, 0)≡ b̂l(x̂) and ŷ=−ŷr(x̂, 0)≡−b̂r(x̂), (2.1a,b)

for the left and right sidewalls, respectively. The channel width below the SWL is
therefore

B̂(x̂, ẑ)= ŷl(x̂, ẑ)+ ŷr(x̂, ẑ), on −ĥ 6 ẑ 6 0, (2.2)

and
B̂0(x̂)≡ B̂(x̂, 0)= b̂l(x̂)+ b̂r(x̂), on ẑ= 0, (2.3)

represents the surface width at the quiescent state. The instantaneous free-surface
elevation is expressed as ẑ= η̂(x̂, ŷ, t̂), and the moving shorelines can be defined by

ŷ= ŷl(x̂, η̂(t))≡ ŝl(x̂, t̂) and ŷ=−ŷr(x̂, η̂(t))≡−ŝr(x̂, t̂), (2.4a,b)

respectively.
To describe the problem in terms of dimensionless variables, the characteristic

wavelength λ̂ is employed as the length scale in the longitudinal direction and the
characteristic unperturbed water depth ĥ0 as the length scale for the vertical direction.
The length scale in the spanwise direction can be independent of the vertical length
scale, i.e. water depth. However, it must be smaller than the water depth. Without
loss of generality, the characteristic water depth ĥ0 will also be used as the spanwise
scale since cross-sectional averaging will be conducted in the following sections. This
will avoid introducing another parameter in the analysis. The time scale is chosen as
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λ̂/ĉ0, where ĉ2
0 = ĝĥ0 is the linear wave celerity in shallow water and ĝ denotes the

gravitational acceleration. Thus, the following dimensionless variables are introduced:

x= x̂/λ̂, (y, z, h, bl, br, sl, sr, B)= (ŷ, ẑ, ĥ, b̂l, b̂r, ŝl, ŝr, B̂)/ĥ0, (2.5a,b)

t= t̂
(√

ĝĥ0

/
λ̂

)
. (2.5c)

The velocity vector û= (û, v̂, ŵ) with components in the longitudinal, spanwise and
vertical direction, respectively, is introduced. The dimensionless velocity components
are expressed as

u= û
/(

ε

√
ĝĥ0

)
and (v,w)=µ(v̂, ŵ)

/(
ε

√
ĝĥ0

)
, (2.6a,b)

where two parameters,

µ= ĥ0/λ̂ and ε = â0/ĥ0, (2.7a,b)

representing the nonlinearity and frequency dispersion respectively, are introduced, in
which â0 is the characteristic wave amplitude. The dimensionless surface elevation and
pressure are

η= η̂/â0 and p= p̂/(ρ̂ĝâ0), (2.8a,b)

where ρ̂ represents the density of water.
Assuming that water is incompressible and ignoring the viscous effects, the

governing equations for wave motions can be written in dimensionless form as

∂u
∂x
+ 1
µ2

(
∂v

∂y
+ ∂w
∂z

)
= 0, (2.9)

for the mass conservation, and

∂u
∂t
+ ε

[
∂

∂x
(u2)+ 1

µ2

{
∂

∂y
(uv)+ ∂

∂z
(uw)

}]
=−∂p

∂x
, (2.10)

∂v

∂t
+ ε

[
∂

∂x
(uv)+ 1

µ2

{
∂

∂y
(v2)+ ∂

∂z
(vw)

}]
=−∂p

∂y
, (2.11)

∂w
∂t
+ ε

[
∂

∂x
(uw)+ 1

µ2

{
∂

∂y
(vw)+ ∂

∂z
(w2)

}]
=−∂p

∂z
− 1
ε
, (2.12)

for the conservation of momentum. The flow is assumed to be irrotational, i.e. ∇×u=
0, thus a velocity potential, ∇φ = u, can be introduced, where u = (u, v, w). The
conservation of energy can be expressed by means of the Bernoulli equation

∂φ

∂t
+ 1

2
ε

[
u2 + 1

µ2
(v2 +w2)

]
+ p+ z

ε
= 0, (2.13)

where the Bernoulli constant has been absorbed into the velocity potential. The
kinematic boundary condition on the free surface is expressed as

w=µ2

(
∂η

∂t
+ εu

∂η

∂x

)
+ εv ∂η

∂y
, on z= εη(x, y, t). (2.14)
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The no-flux boundary condition along the bottom requires

w=−µ2u
∂h
∂x
− v ∂h

∂y
, on z=−h(x, y). (2.15)

Along the moving shorelines on the channel banks, the kinematic boundary conditions
are

εv =µ2

(
∂sl

∂t
+ εu

∂sl

∂x

)
, on y= sl(x, t) (2.16)

and

εv =−µ2

(
∂sr

∂t
+ εu

∂sr

∂x

)
, on y=−sr(x, t), (2.17)

for the left and right sidewalls, respectively. Finally the atmospheric pressure variation
on the free surface is ignored. Thus,

p= 0, on z= εη(x, y, t). (2.18)

Equations (2.9) to (2.18) constitute the governing equations and boundary conditions
for a general three-dimensional nonlinear water wave problem without considering
viscous effects. Additional initial conditions for free-surface elevation and velocity,
and upstream and downstream boundary conditions are needed for a specific problem
of interest. A wave propagation model expressed in terms of cross-sectional-averaged
longitudinal velocity and spanwise-averaged free-surface elevation will be derived in
the following section. Viscous effects will be considered in § 4.4 via boundary layer
flow analyses.

3. Cross-sectional-averaged wave equations
The flow problem stated in the previous section can be reduced to a set of

one-dimensional governing equations by averaging over a channel cross-section and
applying the boundary conditions on the free surface and solid boundaries. The
cross-sectional area at the quiescent state A0(x) and the instantaneous cross-sectional
area A(x, t) are defined by

A0(x)=
∫ bl

−br

h(x, y)dy=
∫ 0

−max(h)
B(x, z)dz (3.1)

and

A(x, t)= A0 +
∫ −br

−sr

(εη− h)dy+ ε
∫ bl

−br

ηdy+
∫ sl

bl

(εη− h)dy, (3.2)

respectively. The cross-sectional average of a function f (x, y, z, t) is defined as

〈 f 〉 = 1
A

∫ sl

−sr

∫ εη

−h
f (x, y, z, t)dzdy. (3.3)

Although the averaging process of the governing equations is straightforward, some of
the details are presented in appendix A for completeness. The resulting cross-sectional-
averaged equations of motions are

1
ε

∂A
∂t
+ ∂(〈u〉A)

∂x
= 0 (3.4)



Long waves in a non-uniform channel 161

and
∂

∂t
(A〈u〉)+ ε ∂

∂x
(A〈uu〉)=−A

〈
∂p
∂x

〉
, (3.5)

for the conservation of mass and momentum, respectively. Equations (3.4) and (3.5)
are exact for a channel of arbitrary cross-section; no restriction has been imposed on
the parameters, ε and µ. A similar set of equations was derived in dimensional form
by Teng & Wu (1992, equations (12) and (13)). In their derivation, the geometry of
the cross-section was required to be symmetric with respect to the centreline of the
channel. It is shown in the appendix A that this requirement is unnecessary.

For later use, two additional cross-sectional-averaged quantities of a function
f (x, y, z, t) are introduced:

f = 1
A0

∫ bl

−br

∫ 0

−h
f (x, y, z, t)dzdy (3.6)

and

f̃ |z=0 = 1
B0

∫ bl

−br

f (x, y, 0, t)dy. (3.7)

Equation (3.6) can be interpreted as the averaged value over the channel cross-
sectional area at the quiescent state, while (3.7) denotes the averaged value over the
channel still water surface width.

3.1. Boussinesq approximation
In (3.4) and (3.5), 〈uu〉 and 〈∂p/∂x〉 need to be further related to the cross-
sectional-averaged velocity 〈u〉 and surface-width-averaged free-surface elevation η̃.
To accomplish this, additional approximations are needed. First of all, the Boussinesq
approximation is invoked, i.e. O(ε)=O(µ2)�O(1); therefore, the theory is applicable
only for weakly nonlinear and weakly dispersive waves. A second step is to expand
the dimensionless physical variables as power series of µ2:

φ = φ1(x, t)+µ2φ2(x, y, z, t)+O(µ4), (3.8)
η= η1(x, t)+µ2η2(x, y, t)+O(µ4), (3.9)

u= u1(x, t)+µ2u2(x, y, z, t)+O(µ4), (3.10)
v =µ2v2(x, y, z, t)+O(µ4), (3.11)
w=µ2w2(x, y, z, t)+O(µ4). (3.12)

Since the channel width and water depth are considered as of the same order
of magnitude and are smaller than the characteristic wavelength, the vertical and
transverse velocity components are comparable and smaller than the longitudinal
velocity, i.e. O(v)=O(w)�O(u). We remark here that if the channel width is scaled
differently from the water depth, the spanwise velocity will be much weaker than the
vertical velocity when the channel width is smaller than the water depth. With these
power series expansions, it is shown in appendix B that

〈uu〉 = 〈u〉〈u〉 +O(µ4) (3.13)

and 〈
∂p
∂x

〉
= ∂η̃
∂x
+µ2

[
∂

∂x

(
∂̃φ2

∂t

∣∣∣∣
z=0

)
− ∂

2φ2

∂x∂t

]
+O(εµ2, µ4). (3.14)
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As shown in appendix C, the instantaneous cross-sectional area A(x, t) is expressed as

A= A0 + εB0η̃+ ε2 B′0
2
η̃2 +O(ε2µ2, ε3), (3.15)

in which
B′0(x)≡

∂B
∂z
(x, 0). (3.16)

For channels with the sidewall slope being O(1), the instantaneous cross-section
average 〈 f 〉 and the cross-sectional average at the quiescent state f are related as
follows:

〈 f 〉 = f +O(ε). (3.17)

Substituting (3.15) into the continuity equation (3.4) yields

∂η̃

∂t
+ ε B′0

2B0

∂η̃2

∂t
+ 1

B0

∂

∂x

[〈u〉(A0 + εB0η̃)
]=O(ε2, εµ2, µ4). (3.18)

The second term in the equation above can be manipulated by replacing the time
derivative of η̃ with a spatial derivative obtained from the leading-order terms of the
same equation. Thus,

∂η̃

∂t
+ 1

B0

∂

∂x
[〈u〉A0] − εB′0

B2
0
η̃
∂

∂x
[〈u〉A0] + ε

B0

∂

∂x
[〈u〉B0η̃] =O(ε2, εµ2, µ4). (3.19)

Similarly, substituting (3.13), (3.14) and (3.15) into the momentum equation (3.5),
after some manipulations, yields

∂〈u〉
∂t
+ ∂η̃
∂x
+ ε〈u〉∂〈u〉

∂x
+µ2D=O(ε2, εµ2, µ4), (3.20)

where

D(x, t)= ∂

∂x

(
∂̃φ2

∂t

∣∣∣∣
z=0

)
− ∂

2φ2

∂x∂t
. (3.21)

Equations (3.19) and (3.20) are the governing equations for 〈u〉 and η̃. However, D
or φ2 needs to be described.

3.2. Velocity, surface elevation and pressure on a cross-sectional plane
On a channel cross-section, the governing equation for φ2 can be derived by
substituting the perturbation expansions, (3.8)–(3.12), into the conservation of mass,
(2.9) and taking the cross-sectional average of the resulting equation. This yields

∂2φ2

∂y2
+ ∂

2φ2

∂z2
=−∂〈u〉

∂x
, on −h(x, y) < z< 0. (3.22)

Using the leading-order term of (3.19) in the linearized free-surface boundary
condition (2.14) yields

∂φ2

∂z
=−A0

B0

∂〈u〉
∂x
− 1

B0

dA0

dx
〈u〉, on z= 0. (3.23)
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The no-flux boundary condition along the channel bottom (2.15) requires

∂φ2

∂n
=−

〈u〉∂h
∂x√(

∂h
∂y

)2

+ 1

, on z=−h(x, y), (3.24)

in which n denotes the unit normal (in the y–z plane) along the channel bottom at a
fixed x. The leading-order error of the boundary value problem for φ2, (3.22)–(3.24),
is of O(ε, µ2) and is consistent with that of the momentum equation (3.20), where
D is multiplied by µ2. If the channel is bounded by vertical walls, two additional
boundary conditions are required:

∂φ2

∂y
= 〈u〉

(
−dbl

dx
,

dbr

dx

)
+O(µ2), on y= bl(x),−br(x). (3.25)

Since the boundary value problem for φ2 is linear and is only forced by 〈u〉 and
∂〈u〉/∂x, the following solution form is sought:

φ2(x, y, z, t)= χ1(x, y, z)〈u〉 + χ2(x, y, z)
∂〈u〉
∂x
+ F(x, t), (3.26)

in which F(x, t) is an arbitrary function and does not contribute to the velocity field
(see (3.20) and (3.21)). Substituting (3.26) into (3.22)–(3.24), the boundary value
problems for χ1 and χ2 can be expressed as

∂2χ1

∂y2
+ ∂

2χ1

∂z2
= 0, on−h(x, y) < z< 0, (3.27)

∂χ1

∂z
=− 1

B0

dA0

dx
, on z= 0, (3.28)

∂χ1

∂n
=−

∂h
∂x√(
∂h
∂y

)2

+ 1

, on z=−h(x, y) (3.29)

and

∂2χ2

∂y2
+ ∂

2χ2

∂z2
=−1, on−h(x, y) < z< 0, (3.30)

∂χ2

∂z
=−A0

B0
, on z= 0, (3.31)

∂χ2

∂n
= 0, on z=−h(x, y). (3.32)

As pointed out before, if the channel banks are vertical walls, two additional no-flux
boundary conditions for χ1 and χ2 need to be invoked:

∂χ1

∂y
=
(
−dbl

dx
,

dbr

dx

)
and

∂χ2

∂y
= 0, on y= bl(x),−br(x). (3.33a,b)
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The function χ1 is a new contribution of the present theory, representing the effects
of changes of cross-sectional geometry in the direction of wave propagation which
are appreciable within a wavelength. These effects were not considered in Peregrine
(1968) and TW97. Functions χ1 and χ2 depend only on the geometry of the channel
and can be calculated either numerically or analytically, once the channel configuration
is prescribed. Several numerical methods, i.e. finite differences, finite elements and
boundary elements, can be used to solve the boundary value problems for χ1 and χ2.
Analytical solutions can also be obtained for simple geometries such as rectangular
and triangular cross-sections.

Three-dimensional features of the velocity field as well as the pressure field
can be recovered from the perturbation solutions once the cross-sectional-averaged
quantities 〈u〉(x, t), η̃(x, t), together with the functions χ1(x, y, z) and χ2(x, y, z), are
computed. The expressions for the velocity components, with a leading-order error of
O(ε2, εµ2, µ4), are

u(x, y, z, t)= 〈u〉 +µ2(χ1 − χ1)
∂〈u〉
∂x
+µ2(χ2 − χ2)

∂2〈u〉
∂x2

, (3.34)

v(x, y, z, t)=µ2

(
∂χ1

∂y
〈u〉 + ∂χ2

∂y
∂〈u〉
∂x

)
, (3.35)

w(x, y, z, t)=µ2

(
∂χ1

∂z
〈u〉 + ∂χ2

∂z
∂〈u〉
∂x

)
. (3.36)

The expression for surface elevation is

η(x, y, t)= η̃+µ2
(
χ̃1|z=0 − χ1|z=0

) ∂〈u〉
∂t
+µ2

(
χ̃2|z=0 − χ2|z=0

) ∂2〈u〉
∂t∂x

, (3.37)

and the pressure becomes

p(x, y, z, t)= η̃+µ2
(
χ̃1|z=0 − χ1

) ∂〈u〉
∂t
+µ2

(
χ̃2|z=0 − χ2

) ∂2〈u〉
∂t∂x

− z
ε
. (3.38)

Examples of the velocity field and surface elevation are given in § 4.1 for simple
geometries.

3.3. One-dimensional cross-sectional-averaged Boussinesq equations
Once χ1 and χ2 are calculated for a given channel geometry, (3.26) can be substituted
into (3.21) to get

D(x, t)= α∂〈u〉
∂t
+ β ∂

2〈u〉
∂t∂x

+ γ ∂
3〈u〉
∂t∂x2

, (3.39)

where

α(x)= ∂

∂x

[
χ̃1|z=0

]
− ∂χ1

∂x
, (3.40)

β(x)= χ̃1|z=0 − χ1 + ∂

∂x

[
χ̃2|z=0

]
− ∂χ2

∂x
, (3.41)

γ (x)= χ̃2|z=0 − χ2 (3.42)
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can be readily calculated for a given channel configuration. It is emphasized that in
TW97’s theory, α, β = 0. Finally the momentum equation (3.20) can be rewritten in
the following form:

(1+µ2α)
∂〈u〉
∂t
+ ∂η̃
∂x
+ ε〈u〉∂〈u〉

∂x
+µ2β

∂2〈u〉
∂t∂x

+µ2γ
∂3〈u〉
∂t∂x2

=O(ε2, εµ2, µ4). (3.43)

Equations (3.19) and (3.43) are the governing equations for the cross-sectional-
averaged longitudinal velocity, 〈u〉, and the spanwise-averaged free-surface elevation,
η̃. Properly described initial conditions and upstream/downstream boundary conditions
in the channel are needed to solve the initial boundary value problem. Since the
Boussinesq approximation has been employed, the governing equations are suitable for
modelling weakly nonlinear and weakly dispersive waves. The coefficients α, β and
γ in these equations depend only on the cross-sectional geometry, which is allowed
to vary significantly within a wavelength. Specifically, the term associated with α
represents the correction to the local acceleration, whereas the term associated with β
denotes the wave decay or amplification caused by the variation of the cross-sectional
geometry along the channel. Both terms are negligible when the channel variations in
the longitudinal direction become very small. The term associated with γ represents
the frequency dispersion effects, which remain important even when the channel
variations in the longitudinal direction are small. Finally, for a straight rectangular
channel, (3.19) and (3.43) reduce to the one-dimensional version of the original
Boussinesq equation exactly (Peregrine 1967).

3.4. Analytical expressions for χ1(x, y, z) and χ2(x, y, z)
In this section, analytical solutions of χ1 and χ2 for rectangular and triangular
cross-sections are presented. The corresponding coefficients α, β and γ can also be
expressed analytically. For an arbitrary cross-section geometry, χ1 and χ2 need to be
obtained numerically, as will be presented in § 4.1.

3.4.1. Rectangular channel
Figure 2(a) depicts a rectangular channel of width B0, depth h and boundaries

located at y= B0/2, and −B0/2. For this configuration, functions χ1 and χ2 are

χ1(x, y, z)= 1
2B0

dB0

dx

[−2hz− z2 + y2
]− dh

dx
z, (3.44)

χ2(x, y, z)=−hz− z2

2
. (3.45)

The corresponding coefficients in (3.43) can be readily obtained as

α =− h2

3B0

d2B0

dx2
+
(

1
12
+ h2

3B2
0

)(
dB0

dx

)2

− h
2B0

dh
dx

dB0

dx
− h

2
∂2h
∂x2

, (3.46)

β =−h
(

h
3B0

dB0

dx
+ dh

dx

)
, (3.47)

γ =−h2

3
. (3.48)

Clearly, the coefficients α and β depend on the rate of change in channel width and
depth along the direction of wave propagation, whereas γ depends only on the local
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FIGURE 2. Definitions for (a) rectangular and (b) triangular cross-sections.

depth. For the case where the channel has a constant width, i.e. B0 = constant, the
above coefficients reduce to

α =−h
2

d2h
dx2

, β =−h
dh
dx
, γ =−h2

3
, (3.49a−c)

so the contribution of the terms associated with α and β depend on changes in the
water depth along the channel. Using the above coefficients in (3.43), the original one-
dimensional version of the Boussinesq equation by Peregrine (1967) is recovered, in
which the percentage change of water depth within a wavelength is allowed to be
of order-one. Section 4.4.1 includes the analysis of solitary waves propagating over
a channel of constant width and uniform slope (Liu et al. 2006), where expressions
(3.49) apply. For the case where the water depth remains a constant while the channel
width varies, the coefficients become

α =
(

1
12
+ h2

3B2
0

)(
dB0

dx

)2

, β =− h2

3B0

dB0

dx
, γ =−h2

3
. (3.50a−c)

Various examples for waves propagating in convergent and divergent channels of
constant depth, where (3.50) apply, are analysed in § 4. For uniform channels, the
coefficients in the governing equations become

α = β = 0, γ =−h2

3
. (3.51a,b)

Note that for a rectangular channel, γ is always negative. Waves propagating along
uniform channels are analysed in § 4.1.

3.4.2. Triangular channel
For a channel with a symmetric triangular cross-section (figure 2b), the channel

boundary can be expressed as

z=−h(x, y)= 2H
B0
|y| −H, (3.52)

where B0 is the surface width and H denotes the maximum depth along the centreline
(figure 2b). The analytical solutions for χ1 and χ2 can be obtained as

χ1 =−1
2

(
H
B0

dB0

dx
+ dH

dx

)
z+
(

1
4H

dH
dx
− 1

4B0

dB0

dx

)
(z2 − y2), (3.53)
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and
χ2 =− 1

4(2Hz+ z2 + y2). (3.54)

Hence, the expressions for the coefficients in the Boussinesq-type equations become

α = −
(

H2

3B0
+ B0

48

)
d2B0

dx2
+
(

1
16
+ H2

3B2
0

)
dB0

dx

2

−
(

B0

24H
+ 2H

3B0

)
dB0

dx
dH
dx
+
(

1
3
− B2

0

48H2

)
dH
dx

2

+
(

B2
0

48H
−H

)
d2H
dx2

, (3.55)

β =
(

B2
0

48H
− 5H

3

)
dH
dx
+
(

B0

16
− H2

3B0

)
dB0

dx
, (3.56)

γ = B2
0

48
− H2

3
. (3.57)

The analysis of these coefficients is difficult as complex relations between H and
B0 determine their values. For example, γ could be either positive (B0 > 4H), zero
(B0 = 4H) or negative (B0 < 4H), resulting in significant differences in the frequency
dispersion properties of the governing equations. Channels of symmetric triangular
cross-section are briefly studied in § 4.3.

3.5. Numerical solutions for χ2(x, y, z)
For an arbitrary cross-section, the boundary value problems for χ1 and χ2, given by
(3.27)–(3.32), can be solved numerically. A finite difference scheme with second-order
accuracy in space is employed in this paper to solve these boundary value problems.
The accuracy of the numerical scheme is confirmed by comparing numerical solutions
to the analytic solution of χ2 for the rectangular channel (3.45) and to the numerical
solutions for a trapezoidal cross-section given by Teng & Wu (1994, § 2.2 in their
paper); the agreements are excellent. As examples, numerical solutions of χ2 for
the rectangular, trapezoidal and triangular cross-sections shown in figure 3 will be
analysed in § 4.1. The numerical scheme used in solving χ2 can be easily extended
to solve the boundary value problem for χ1, given by (3.27)–(3.29), once the channel
configuration in the longitudinal direction is known.

4. Applications
To illustrate the capability of the present model, analytical and numerical examples

for uniform channels, channels where the geometry changes slowly and channels
where changes in cross-section are appreciable within a wavelength are presented in
this section. These cases are characterized by dA0/dx= 0, O(ε) and O(1), respectively.
Section 4.1 focuses on the effect of the cross-section geometry on the evolution of a
solitary wave in uniform channel. In § 4.2 the numerical results of the present model
are compared with laboratory experiments on the evolution of a solitary wave in a
rectangular channel with slowly varying width (Chang, Melville & Miles 1979). In
§ 4.3, solitary wave propagation in a channel with a rapid contraction is studied.

Following the approach suggested by Liu & Orfila (2004), the effects of viscous
boundary layer flows on wave decay are introduced in the Boussinesq-type equations.
Section 4.4.1 compares the theoretical solutions including the consideration of viscous
boundary layer flows to the laboratory experiments for solitary wave shoaling on a
sloping beach (Liu et al. 2006). Chang et al.’s (1979) experimental results are
revisited in § 4.4.2 using the model with viscous effects.
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FIGURE 3. Numerical solutions for χ2(y, z) in (a) rectangular, (b) trapezoidal and
(c) triangular cross-sections with aspect ratio of B0/h = 2, where the mean depth is
h= A0/B0.

4.1. Solitary waves in a uniform channel
Analytical solutions for a solitary wave in a uniform channel with inclined sidewalls
can be found in TW97. Here, the solitary wave solutions are briefly discussed
for completeness, since they will be used in the following sections as the initial
conditions for studying wave propagation in non-uniform channels. For uniform
channels of arbitrary cross-sectional geometry, the governing equations for the
spanwise-averaged free-surface elevation and the cross-sectional-averaged longitudinal
velocity are deduced from (3.19) and (3.43):

∂η̃

∂t
+ A0

B0

∂〈u〉
∂x
+ εA0B′0

B2
0
η̃
∂〈u〉
∂x
+ ε ∂

∂x
[〈u〉η̃] =O(ε2, εµ2, µ4), (4.1)

∂〈u〉
∂ t̂
+ ∂η̃
∂ x̂
+ ε〈u〉∂〈u〉

∂ x̂
+µ2γ

∂3〈u〉
∂t∂x2

=O(ε2, εµ2, µ4). (4.2)

The leading-order solitary wave solutions to these equations are given by

η̃= sech2[K(x− ct)] +O(ε, µ2), (4.3)
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〈u〉 = 1√
h

sech2[K(x− ct)] +O(ε, µ2), (4.4)

with

K = 1
2µ

√
ε

hγ

(
hB′0
3B0
− 1
)
, c2 = h− ε

(
1− hB′0

3B0

)
Sgn(γ ), h= A0

B0
, (4.5a−c)

where Sgn(γ ) denotes the sign of γ , K is the effective wavenumber, c represents
the phase speed and h is the mean depth (see TW97). The solitary wave solution
given above is valid only if (hB′0/3B0 − 1)/γ > 0. Since the sign of γ depends on
cross-sectional geometry and cannot be generalized, the following discussions are
restricted to three simple geometries, namely rectangular, triangular and trapezoidal,
for which γ < 0 (figure 3). In these cases the parameters of the cross-sectional
geometry (embedded in γ , B0, h and B′0) affect the equivalent wavelength and
phase speed. However, the phase speed is independent of the magnitude of γ . Thus,
solitary waves travelling in a channel with outwardly fanning sidewalls at z = 0, i.e.
0 < B′0 < 3B0/h, propagate with longer wavelengths and slower speeds, compared to
those in a rectangular channel with B′0= 0. Conversely, in a channel with downwardly
fanning sidewalls with B′0 < 0, solitary waves have shorter wavelengths and faster
wave speeds.

Numerical solutions for χ2, which are used to compute γ and other derived
quantities for rectangular, trapezoidal and triangular cross-sections, are shown in
figure 3. The cross-sections are characterized by a ratio of B0/h= 2. The trapezoidal
and triangular cross-sections are non-symmetric with respect to the x-axis. Contour
lines of χ2 are perpendicular to the sidewalls whereas on the SWL (z = 0), χ2
decreases from a maximum value on the vertical walls to a minimum on the sloping
walls. The magnitude of the gradient of χ2 increases in z, implying higher velocities
on the free surface. The coefficients obtained from (3.42) are γ = −0.336 for
the rectangular, γ = −0.496 for the trapezoidal and γ = −0.632 for triangular
cross-sections.

Figure 4 illustrates solitary wave free-surface profiles with ε = 0.3 in these cross-
sections. As predicted, the wavelength is the longest in the triangular channel and
shortest for the rectangular cross-section. Since the nonlinearity is the same for all
cases, solitary waves travel at different phase speeds solely due to the effect of the
sidewall slope, B′0. The reader is referred to Teng (2000) for a detailed discussion on
the effects of cross-sectional geometry on solitary waves of permanent form.

The expression for the velocity components on a cross-sectional plane in a uniform
channel can be deduced from (3.35) and (3.36),

v =µ2 ∂χ2

∂y
∂〈u〉
∂x

and w=µ2 ∂χ2

∂z
∂〈u〉
∂ x̂

. (4.6a,b)

The surface elevation is obtained from (3.37):

η= η̃+µ2η2, where η2 ≡
(
χ̃2|z=0 − χ2|z=0

) ∂2〈u〉
∂t∂x

. (4.7)

For a rectangular channel, the free-surface elevation η is the same as the spanwise-
averaged free-surface elevation η̃ since χ2 is independent of y (figure 3a). The
spanwise velocity is zero and the vertical velocity varies from a maximum value
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FIGURE 4. Solitary wave profiles in rectangular, trapezoidal and triangular cross-sections
with aspect ratio of B0/h= 2, where the mean depth is h= A0/B0.
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FIGURE 5. (a) The second-order solution for the surface elevation and (b) transverse
velocities, for a solitary wave in a trapezoidal channel with aspect ratio of B0/h= 2 during
maximum acceleration. The magnitude of the velocity is depicted as a small arrow in the
bottom right corner. Dashed horizontal line denotes the still level.

on the free surface to zero at the bottom. More interesting flow features are found
for non-symmetric trapezoidal and triangular cross-sections, where χ2 changes in
the spanwise direction (figure 3b,c) and so do the surface elevation, velocity and
pressure. In fact, at the phase of maximum acceleration, the second-order surface
elevation µ2η2 is concave and varies from a minimum value at the vertical sidewall
to a maximum value on the inclined sidewalls (figures 5a and 6a). At the maximum
deceleration phase, the second-order surface elevation becomes convex. The velocity
on the cross-section, un= (v,w), has a maximum value on the inclined sidewalls and
diminishes towards the vertical walls on the opposite side of the channel cross-section
(figures 5b and 6b). It is noted that the velocity on the cross-sectional plane is one
order of magnitude smaller than the cross-sectional-averaged longitudinal velocity 〈u〉
in both cases.

4.2. Solitary-type wave propagating in a channel of slowly varying width
Chang et al. (1979), referred to as C79 hereafter, presented laboratory data and
numerical simulations for the evolution of solitary waves in a rectangular channel of
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FIGURE 6. (a) The second-order solution for the surface elevation and (b) transverse
velocities for a solitary wave in a triangular channel with aspect ratio of B0/h= 2 during
maximum acceleration. The magnitude of the velocity is depicted as a small arrow in the
bottom right corner. Dashed horizontal line denotes the still level.

constant depth with gradually varying width. Thirty-six experiments were conducted
in converging and diverging channels with different initial wave amplitudes. In this
section, experimental cases with depths of ĥ = 0.3 and 0.2 m, for both convergent
and divergent channels, are used to check the present theory. Results obtained from
TW97’s theory, in which α, β = 0, are also included for comparison. Recall that
TW97’s theory is valid for slow-varying cross-sections, i.e. dA0/dx = O(ε), whereas
in the present theory changes in the area are allowed to be dA0/dx = O(1). Note
that the effect of energy dissipation due to the wall boundary layer flows has been
ignored up to this section; it will be investigated specifically for C79’s experiments
in § 4.4.2. For convenience, dimensional quantities are used in this section.

For the convergent channel the width is defined as

B̂0(x̂)=


0.45, −10 6 x̂< 2.63,
0.45− 0.01875(x̂− 2.63), 2.63 6 x̂< 23.96,
0.05, 23.96 6 x̂< 48,

(4.8)

where B̂0 and x̂ are expressed in metres. It is noted that in the laboratory measurements
dissipative materials were installed near the end of the converging channel to damp
out waves (C79, figure 1). In the present numerical simulations, an additional channel
section with uniform width is inserted in the region x̂ > 23.96 m to allow waves
propagate out of the computational domain. In the divergent channel, the width is
defined as

B̂0(x̂)=


0.05, −10 6 x̂< 2.63,
0.05+ 0.01875(x̂− 2.63), 2.63 6 x̂< 26.63,
0.5, 26.63 6 x̂< 48.

(4.9)

The governing equations, (3.19) and (3.43), are solved numerically by using the
fourth-order Adams–Bashforth–Moulton method (e.g. Wei and Kirby 1995). The
numerical scheme was tested for a solitary wave propagating in a rectangular channel
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FIGURE 7. Instantaneous surface elevation for (a) an initial solitary wave of ε = 0.174
in a converging channel of ĥ0 = 0.3 m and (b) an initial solitary wave of ε = 0.259 in a
diverging channel of ĥ0 = 0.2 m. Profiles are depicted every 1 s, from t̂= 1 to 10 s.

with uniform cross-section. The present model replicated the results obtained by
Wei and Kirby (1995) and was found to conserve mass throughout the simulations.
Conservation of mass was evaluated with the expression

R(t) = 1− m(t)

m(0)
, where m(t) =

∫ ∞
−∞

B0η̃dx (4.10)

is the excess of mass due to the wave at time t and m(0) is the initial excess of mass.
As an example, in the uniform rectangular channel used by Wei and Kirby (1995), a
value of R(160)= 3.2× 10−4 was found for a nonlinear parameter of ε= 0.1 at t= 160.

In C79, solitary waves were generated by a vertical bulkhead moving with the same
velocity as that of fluid particles in the water column under a solitary wave. In the
present numerical simulations the solitary wave solutions, given in (4.3) and (4.4), are
used as the initial conditions for different cases. For the converging channel, initial
solitary waves with nonlinearities of ε = 0.052, 0.092, 0.142 and 0.174 are used. The
wave crest is always located at x̂= 0 as initial condition. On the other hand, in the
diverging channel, ε= 0.088, 0.185, and 0.259 centred at x̂= 0 are examined. The no-
flux boundary conditions are applied at upstream and downstream boundaries, which
are set at x̂=−10 m and x̂= 48 m, respectively. The boundaries are sufficiently far
from the varying-width section so that their appearance does not affect the solutions
inside the varying channel.

4.2.1. Converging channel
Figure 7(a) depicts the evolution of the solitary wave with initial amplitude,

ε = 0.174. The wave profile gradually evolves from a solitary wave to an asymmetric
profile of larger amplitude with a longer tail that increases with travelling distance,
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FIGURE 8. Numerical results are compared with the experimental data of C79 for
the linear converging channel with a mean water depth of ĥ0 = 0.3 m. (a) Numerical
solutions for the maximum surface elevations for initial solitary waves of ε= 0.043, 0.093,
0.140 and 0.174 (from bottom to top), obtained from the present model are depicted by
dotted lines. Numerical results obtained from TW97’s model are shown in dashed lines.
Experimental data are denoted by triangles for ε = 0.043, squares for ε = 0.093, inverted
triangles for ε = 0.140, and circles for ε = 0.174. (b) The relative difference between
the two models is depicted along the channel; the distance is normalized by the effective
wavelength of the incident solitary wave.

which was also observed in the laboratory experiments (C79, figure 7). The long
tail actually represents a portion of the reflected waves. Since the channel width
changes slowly on the wavelength scale, an incident wave is continuously and slowly
reflected from the sidewalls. Therefore, the reflected wave does not have a sharp and
identifiable wave crest. However, the total amount of mass contained in the reflected
wave could be significant if the incident wave has travelled a long distance (i.e. many
wavelengths) as pointed out by Kirby & Vengayil (1988). The conservation of mass is
checked throughout the entire simulation. As an example, for the nonlinear parameter
of ε = 0.052, a value of R(12) = 2.0× 10−7 was obtained at t̂= 12 s.

Figure 8(a) shows the local amplitudes of the evolving waves, normalized by the
local water depth, along the channel. Experimental results and numerical results
obtained with the present and TW97’s theories are included. An increase in wave
amplitudes along the channel is clearly observed as the consequence of the reduction
in the width, which in the present model is represented by the leading-order term
in the conservation of mass equation, i.e. (h/B0)(uB0)x, and the second-order terms
associated with α and β in the momentum equation. The coefficients α and β grow
significantly as the cross-section becomes narrower since they are proportional to B−2

0
and B−1

0 , respectively, (3.50). Both models consistently overestimate the maximum
surface elevation along the channel, though the present model is slightly closer to
the experimental data due to the inclusion of the terms associated with α and β.
It is shown in § 4.4 that the introduction of viscous effects provides a much better
agreement between the experiments and the present models.
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The relative difference between the present and TW97 models is presented in
figure 8(b). Note that the horizontal axis of this plot is normalized by the effective
wavelength of the initial solitary wave. The relative difference is defined as

∆= (η)TW − η
η

, (4.11)

where (η)TW denotes the dimensionless free-surface elevation obtained with TW97’s
theory. Note first that the differences are all positive throughout the entire process,
implying that the higher-order effects of a narrowing channel cross-section reduce the
wave amplitude. The relative differences tend to accumulate as the waves propagate
along the channel, following similar curves that are weakly dependent on ε. Since
the wavelength of a solitary wave decreases as the wave height increases, for a larger
solitary wave the channel appears to be longer, resulting in a larger ∆ value. For
example, for the solitary wave of ε = 0.043, ∆ = 0.016 at the end of the channel,
where x̂/λ̂0 = 2.15 and λ̂0 = 2π/K̂. On the other hand, for the largest solitary wave
of ε = 0.174, ∆= 0.050 at x̂/λ̂0 = 3.66.

4.2.2. Diverging channel
Typical numerical results for an incident solitary wave of ε = 0.259 in a diverging

channel are shown in figure 7(b). It is clear that the amplitude of the main wave
decreases as the channel cross-section widens; thus the dispersive effects become more
important and accordingly a dispersive tail arises. These features were also reported
by C79, figure 6. Again, the mass conservation has been checked. As an example, for
ε = 0.088, a value of R(12) = 4.0× 10−15 was obtained at t̂= 12 s.

The experimental measurements for the wave amplitudes along the diverging
channel are plotted on figure 9(a), together with the numerical results obtained
from the present and TW97 theories. Though both theories overestimate the surface
elevation along the channel, TW97’s theory appears to match experimental data better.
The comparison of theories shows that the contributions from the terms associated
with α and β cause increases in the amplitudes, and they tend to be stronger with
higher nonlinearity. The difference between theories and experimental data is larger
than for the converging case. Viscous effects play a significant role in this case, as
is later shown in § 4.4.

Figure 9(b) shows that the relative difference between the theories increases with
longer travelling distance and stronger nonlinearity. Negative values of ∆ imply the
present theory provide larger values than TW97 due to the contribution of the new
terms. For example, for the smallest solitary wave of ε= 0.088, ∆= 0.022 at the end
of the channel where the wave has travelled roughly 3.94 wavelengths in distance.
In the case of the largest wave of ε = 0.259, a larger difference between theories is
observed, i.e. ∆= 0.041 at x̂/λ̂0= 6.19, since the wave has travelled a longer distance
with respect to the incident wave wavelength.

In C79’s experiments, only slowly varying cross-sections are considered. Conse-
quently, the contributions of the new terms containing α and β are small, and thus
both the present and TW97’s theories provide similar results. The following section
shows results for a channel where the cross-section varies significantly within a
wavelength.
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FIGURE 9. Numerical results are compared with the experimental data of C79 for the
linear diverging channel with a mean water depth of ĥ0 = 0.2 m. (a) Maximum surface
elevations for initial solitary waves of ε = 0.088, 0.185, and 0.259 (from bottom to top)
obtained from the present model are denoted by dotted lines. Numerical results obtained
from TW97’s model are shown as dashed lines. Experimental data are shown as triangles
for ε = 0.088, circles for ε = 0.185 and squares for ε = 0.259. (b) The relative difference
between the two models along the channel is shown; the distance is normalized by the
effective wavelength of the incident solitary wave.

4.3. Solitary-type wave in a channel with a rapid contraction
Numerical experiments are performed in a channel with a rapid contraction, where
the new terms containing α and β in the present theory become significant. Since
no laboratory experiments for such conditions can be found in the literature, the
analysis is focused on the comparison between the present and TW97’s models. In
the numerical simulations, rectangular and triangular cross-sections are compared to
evaluate the effects of the new coefficients and the sidewall slope on wave properties.
To compare results, the mean depth h=A0/B0 and the surface width B0 are the same
for both geometries at any x throughout the domain. For a linear contraction, the
surface width is defined by

B0 =


3.3, −33.3 6 x< 33.3,
9.6− 0.188x, 33.3 6 x< 50,
0.2, 50 6 x< 100,

(4.12)

where B0 and x are normalized by the depth (figure 10a). The maximum and minimum
depth-to-width ratios are chosen as B0= 3.3 at the entrance and B0= 0.2 at the end of
the contraction, satisfying the assumption of comparable depth and widths. With these
values, the change of channel width is appreciable within a wavelength, i.e. dA0/dx=
O(1). The coefficients in the momentum equation for a rectangular channel given by
(3.50) are depicted in figure 10(b–d). Coefficients α and β are zero in the uniform
portion of the channel and increase in the contraction as the section becomes narrower.
Compared to the slowly varying case, the magnitudes of these coefficients are one
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FIGURE 10. (a) Channel width and (b–d) coefficients in the momentum equation along
a rectangular channel with a rapid contraction.

to two orders of magnitude larger, thus their contributions are expected to be more
relevant. The coefficient γ is a constant throughout the channel.

For the rectangular cross-sections, solitary waves with amplitudes of ε = 0.05 and
0.1, centred at x = 0, are used as initial conditions for the numerical experiments.
Figure 11(a) shows the comparison of the maximum surface elevation along the
channel, obtained by the present and TW97’s models. As expected, the reduction of
the cross-section induces a significant increase in the surface elevation during and
after the transition, asymptotically approaching a constant value far downstream from
the contraction (x> 100). The contributions of the new terms associated with α and
β counteract the leading-order amplification caused by the contraction of the channel,
therefore amplitudes predicted by the new theory are lower than those of TW97.

The relative difference between theories shown in figure 11(b) increases as the wave
propagates along the channel. It also increases with larger waves. For instance, for
ε= 0.05, ∆= 0.04 and for ε= 0.01, ∆= 0.07 at the end of the channel. Note that in
these cases the channel transition length is roughly one-half of a wavelength. Although
the values of ∆ are comparable to those in the slowly varying channels, the length
of the channel contraction section in terms of the wavelength is much shorter.

For the triangular channel, the effect of sidewall slope also plays a role in
determining wave evolution. The term associated with B′0 appears in the continuity
equation, whereas the coefficients given by (3.55)–(3.57) are reduced to

α =
(

1
16
− H2

3B2
0

)(
dB0

dx

)2

, β =
(

B0

16
− H2

3B0

)
dB0

dx
, γ = B2

0

48
− H2

3
. (4.13a−c)

As seen in figure 12(a), the wave shoaling in the triangular channel is milder than that
in the rectangular one. The relative difference depicted in figure 12(b) ranges between
∆= 0.07 and ∆= 0.11 at the end of the channel for ε = 0.05 and 0.01, respectively.
These values are larger than the corresponding cases in the rectangular channel.

Figure 13 depicts the wave evolution in channels of rectangular and triangular cross-
sections during the entire simulation. The initial profiles are slightly different as the
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FIGURE 11. Numerical results in a rectangular channel with a rapid contraction.
(a) Maximum surface elevations for initial solitary waves of ε= 0.05 and 0.10. Numerical
results from the present model are depicted by solid lines and those from TW97’s
theory by dashed lines. Vertical dashed lines denote the beginning and the end of the
contraction. (b) The relative difference between the two models is shown. Circles indicate
the beginning and squares the end of the contraction.
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FIGURE 12. Numerical results in a triangular channel with a rapid contraction.
(a) Maximum surface elevations for initial solitary waves of ε= 0.05 and 0.10. Numerical
results from the present model are depicted by solid lines and those from TW97’s
theory by dashed lines. Vertical dashed lines denote the beginning and the end of the
contraction. (b) The relative difference between the two models is shown. Circles indicate
the beginning and squares the end of the contraction.
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FIGURE 13. Instantaneous surface elevation for an initial solitary wave of ε=0.05 in (a) a
rectangular and (b) a triangular cross-section of equivalent depth ĥ0 = 0.3 m. Profiles are
depicted every 1 s, from t̂ = 1 to 17 s. Vertical dashed lines denote the beginning and
end of the contraction.

effective wavenumber K is a function of the cross-sectional geometry. As waves move
through the channel contraction, they experience an increase in the surface elevation,
evolving from a solitary to an asymmetric profile, followed by a dispersive tail. At
the same time small waves are reflected back from the channel contraction, reaching
x̂/ĥ0 = 0 at t̂ = 15–17 s. The reflected waves are more detectable since the channel
width changes appreciably within the wavelength scale. The main wave grows stronger
in the rectangular cross-section channel, whereas the trailing wave train has larger
amplitudes in the triangular channel.

4.4. Viscous effects
It is known from the literature that viscous effects could become important in small-
scale laboratory experiments (e.g. Liu et al. 2006). Indeed, figures 8 and 9 show the
large discrepancies between the theoretical predictions and experimental measurements
appearing for C79’s experiments. Both C79 and Kirby & Vengayil (1988) suggested
that the discrepancies are caused by viscous dissipation. In this section the effects
of laminar boundary layer flows adjacent to the channel boundary are added in the
cross-sectional-averaged continuity equation. This approach was developed by Liu &
Orfila (2004) for the bottom boundary layer and was extended in Liu et al. (2006) to
consider the viscous damping of a solitary wave propagating in a rectangular channel,
in which both bottom and sidewall boundary layers are considered.

Liu & Orfila (2004) showed that the viscous effects generate a flow deficit in the
wave propagation direction in bottom boundary layer flows, which in turn induces
mass fluxes normal to the boundary into the core region where Boussinesq-type
equations are solved. Consequently, in deriving the cross-sectional-averaged equation
for conservation of mass, additional mass fluxes along the outer edge of the boundary
layer must be added:

1
ε

∂A
∂t
+ ∂

∂x
[〈u〉A] = δ

µ
Uξ , (4.14)
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where

δ2 = ν̂

λ̂

√
ĝĥ0

(4.15)

represents a dimensionless measure of viscous effects, with ν̂ = 10−6 m2 s−1 being
the kinematic viscosity of water. Following Liu et al. (2006) for a rectangular channel
(figure 2a), the total flux being transferred from the boundary layer to the core region
becomes

Uξ (x, t)= B0 + 2h√
π

∫ t

0

∂〈u(x, τ )〉/∂x√
t− τ dτ . (4.16)

Hence, for a rectangular channel with a varying cross-section, the continuity equation
(3.19) becomes, to O(ε2, εµ2, µ4),

∂η̃

∂t
+ 1

B0

∂

∂x
[〈u〉A0] − εB′0

B2
0
η̃
∂

∂x
[〈u〉A0] + ε

B0

∂

∂x
[〈u〉B0η̃]

− δ

µ

(
1+ 2h/B0√

π

) ∫ t

0

∂〈u(x, τ )〉/∂x√
t− τ dτ = 0. (4.17)

It is necessary to recognize that δ=O(ε2, µ4) is added to the Boussinesq approxima-
tion, so that the viscous effects are slightly weaker than the frequency dispersion
and nonlinear effects, but not too small to be neglected. The cross-sectional-averaged
momentum equation (3.43) remains unchanged.

The same fourth-order Adams–Bashforth–Moulton method is used to solve the
governing equations with the viscous effects, (4.17) and (3.43). The convolution
integral representing the viscous term is computed by using the Gauss-Quadrature
method. The viscous model is checked with the shoaling of solitary waves over a
uniform beach in a rectangular wave channel (Liu et al. 2006) in the next section.

4.4.1. Viscous damping of solitary waves in the shoaling zone
The present theory is compared to experimental data obtained by Liu et al. (2006)

in a rectangular channel with a sloping beach. Experiments were performed in the
32 m long, 0.6 m wide and 0.9 m deep wave tank in the DeFrees Hydraulics
Laboratory at Cornell University. The channel consists of an initial uniform
rectangular cross-section of water depth ĥ = 0.15 m and a 1:20 sloping glass beach.
Surface elevations were recorded at six locations with a constant spacing of 2.5 m in
the constant depth region and of approximately 0.5 m in the shoaling zone. Several
solitary waves with different wave amplitudes were generated. At x̂ = 6.5 m from
the wavemaker, solitary waves with ε = 0.091, 0.174, 0.270, 0.352 and 0.409 were
measured. In the numerical simulations, the water depth is defined by

ĥ=


0.15, −10 6 x̂< 19.88,
1.144− 0.05x̂, 19.88 6 x̂< 22,
0.044, 22 6 x̂ 6 32,

(4.18)

where ĥ and x̂ are expressed in metres. Since the channel cross-section remains a
constant, the cross-sectional-averaged equation of mass conservation, (4.17), can be
simplified to

∂η̃

∂t
+ ∂

∂x
(u[h+ εη̃])− δ

µ

1+ 2h/B0√
π

∫ t

0

〈u〉x(x, τ )√
t− τ dτ = 0. (4.19)
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The coefficients in the momentum equation, (3.43), are defined by (3.49). Note
that α = 0 throughout the domain, whereas β = 0 in the constant depth region and
decreases over the slope (β ∼ h). Thus, without considering the viscous effects,
TW97’s and the present theory are the same in the uniform section and are different
by the term associated with β in the shoaling zone. The dispersive coefficient scales
as γ ∼ h2, so the corresponding term becomes smaller in shallower water.

The comparisons between the experimental data and numerical results are presented
in figure 14. Both the present model and TW97’s model with viscous effects are
computed. Results are shown as the difference between the local wave height and
the corresponding value at the first measuring station located at x̂ = 6.5 m. For
convenience, this difference is defined as

∇= η− (η)6.5. (4.20)

Numerical results from both models are identical and compare reasonably well with
the experimental data in the constant depth section, with experimental amplitudes
being slightly above the predicted curves. The amplitude decays almost linearly along
the uniform section of the flume. In the shoaling zone, the results of the present model
are in much better agreement with experimental data because the present model has
considered the effects of beach slope accurately. As the nonlinearity increases, the
wavelength of the solitary wave becomes shorter. Consequently, the beach slope
effects also become more important. The relative difference between the present and
TW97’s models (considering viscous effects) also becomes more significant for larger
waves, as shown in figure 15. A relative difference between theories of ∆= 0.03–0.1
appears over the sloping beach for different wave amplitudes.

4.4.2. Viscous damping of solitary waves in a converging/diverging channel
In §§ 4.2.1 and 4.2.2, based on the inviscid flow theories, numerical solutions

for solitary waves propagating in a converging/diverging channel with a rectangular
cross-section are compared with the experimental data in figures 8 and 9, respectively.
Results with the consideration of viscous boundary layer effects are shown in this
section.

In figure 16 numerical results including viscous boundary layer effects for the
linear converging and diverging channels are compared with the experimental data
reported in C79. For the converging channel cases (figure 16a), the new results show
excellent agreement for the cases with ε = 0.093, 0.140 and 0.174. The agreement is
less impressive for the case of ε = 0.043, where the initial wave height is very small.
The comparisons for the diverging channel cases are shown on figure 16(b). Although
the agreement between the viscous boundary layer theory and the experimental data
is improved over that without considering the viscous effects (see figure 9), the
improvement is not as significant as in the converging channel case. The causes for
this discrepancy are still unknown.

5. Concluding remarks

A mathematical model for long waves propagating in a straight channel with
an arbitrary cross-section is developed. The resulting Boussinesq-type equations are
expressed in terms of the cross-sectional-averaged velocity in the longitudinal direction
and the spanwise-averaged free-surface elevation. The inclusion of new terms, which
depend on the configuration of the channel cross-section, allows rapid changes of
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FIGURE 14. Maximum surface elevations for solitary waves of ε = 0.091 (a), 0.174 (b),
0.270 (c), 0.352 (d) and 0.409 (e) at x̂ = 6.5 m are shown along the wave flume.
The results obtained from the present model are depicted by solid lines. Results from
TW97’s modified theory are depicted by dashed lines. Both theories include viscous
effects. Experimental data by Liu et al. (2006) are shown as circles.
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FIGURE 16. Numerical results that include consideration of viscous boundary layer effects
are compared with the experimental data of C79 for linear converging and diverging
channels. (a) Maximum surface elevations in the converging channel for initial solitary
waves of ε=0.043, 0.093, 0.140 and 0.174 (from bottom to top) obtained from the present
model are shown by solid lines. Experimental data are denoted by triangles for ε= 0.043,
squares for ε= 0.093, inverted triangles for ε= 0.140 and circles for ε= 0.174. (b) As in
(a) but in the diverging channel for initial solitary waves of ε = 0.088, 0.185 and 0.259
(from bottom to top). Experimental data are denoted by inverted triangles for ε = 0.088,
circles for ε = 0.185 and squares for ε = 0.259.

the channel geometry in the direction of wave propagation. Thus, the characteristics
of wave amplitude amplification/decay and frequency dispersion are affected by the
cross-section geometry. Velocity components, pressure and free-surface variation on a
cross-section can be calculated once the Boussinesq-type equations are solved. The
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model is restricted to channels with sidewall slope of order-one, and where depth and
width are of the same order.

Two new features of the present model, namely arbitrary channel cross-section
and appreciable variation of channel cross-section within the wavelength scale in
the direction of wave propagation, have been highlighted by investigating solitary
wave propagation in straight channels with rectangular, triangular and trapezoidal
cross-sections. Numerical computations in uniform channels show spanwise changes
in the surface elevation for trapezoidal and triangular cross-sections, which have been
observed earlier in experiments (Sandover & Taylor 1962; Peregrine 1969; Treske
1994; Teng & Wu 1997). However, other flow features such as possible wave breaking
at the sidewall slopes or cross-wave formation for relatively high Froude numbers
(Sandover & Taylor 1962; Fenton 1973; Treske 1994), cannot be captured by the
present theory.

Following Liu & Orfila’s (2004) approach, viscous effects from the laminar
boundary layer flows are heuristically included in the model. The boundary layer
flows are driven by the cross-sectionally averaged pressure gradient in the direction
of wave propagation and induce a normal mass flux into the core region, where the
velocity field is essentially irrotational. Thus, the cross-sectional-averaged continuity
equation is modified by adding the mass flux across the channel boundary. It is
shown that the theoretical results that include consideration of viscous boundary layer
effects give better agreement with the experimental data by C79 and by Liu et al.
(2006). However, in the diverging channel cases, the agreement is less satisfactory.
The causes for this discrepancy are still unknown.

The present model could be modified to include some other important features
existing in natural systems, such as curvature and channel branching (e.g. Nachbin &
Simoes 2012).
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Appendix A. Derivation of cross-sectional-averaged equations
Although the procedure of deriving the cross-sectional-averaged conservation of

mass and momentum equations is straightforward, in the existing literature (Peregrine
1968; Teng 1990) approximations have been adopted that appear to be unnecessary.
For completeness, the procedure of derivation and some of the key steps with results
are highlighted here.

A.1. Conservation of mass in exact form
The cross-sectional-averaged velocity is defined as

〈u〉 = 1
A(x, t)

∫ sl

−sr

∫ εη

−h
u(x, y, z, t)dzdy, (A 1)

in which A(x, t) denotes the instantaneous cross-sectional area. Therefore, Q(x, t) =
〈u〉A represents the volume flux across the cross-section. The conservation of mass
requires

1
ε

∂A
∂t
+ ∂Q
∂x
= 1
ε

∂A
∂t
+ ∂(〈u〉A)

∂x
= 0, (A 2)

in the dimensionless form.



184 P. Winckler and P. L.-F. Liu

An alternative derivation is as follows. The exact equation of mass conservation
can also be derived by integrating (2.9) in the vertical direction from the bottom
z=−h(x, y, t) to the surface z= εη(x, y, t):∫ εη

−h

∂u
∂x

dz+ 1
µ2

(∫ εη

−h

∂v

∂y
dz+

∫ εη

−h

∂w
∂z

dz
)
= 0. (A 3)

Using the Leibniz rule and the boundary conditions (2.14) and (2.15) yields

∂

∂x

∫ εη

−h
udz+ 1

µ2

∂

∂y

∫ εη

−h
vdz+ ∂η

∂t
= 0. (A 4)

Defining the depth-averaged velocities as

ŭ= 1
εη+ h

∫ εη

−h
udz, v̆ = 1

εη+ h

∫ εη

−h
vdz, (A 5a,b)

and the total water depth as H = εη+ h, (A 4) becomes

1
ε

∂H
∂t
+ ∂

∂x
(Hŭ)+ 1

µ2

∂

∂y
(Hv̆)= 0. (A 6)

Integrating (A 6) from the right-hand boundary y=−sr(x, t) to the left-hand boundary
y= sl(x, t) and using the Leibniz rule yields

1
ε

∂

∂t

∫ sl

−sr

Hdy+ ∂

∂x

∫ sl

−sr

Hŭdy+H(sl)

[
−1
ε

∂sl

∂t
− ŭ(sl)

∂sl

∂x
+ 1
µ2
v̆(sl)

]
+H(−sr)

[
−1
ε

∂sr

∂t
− ŭ(−sr)

∂sr

∂x
− 1
µ2
v̆(−sr)

]
= 0, (A 7)

in which the subscripts, (−sr) and (sl), denote the physical quantities being evaluated
at y=−sr and y= sl, respectively. By definition the total water depth at the shoreline
vanishes, i.e. H(−sr) and H(sl) = 0 for cross-sections where sidewalls are not vertical.
Thus, the last two terms in the equation above vanish. On the other hand, when the
channel banks are vertical, the kinematic boundary conditions, (2.16) and (2.17), can
be integrated from −h to εη to show that the last two terms in (A 7) also vanish.
Thus,

1
ε

∂

∂t

∫ sl

−sr

Hdy+ ∂

∂x

∫ sl

−sr

Hŭdy= 0. (A 8)

The first integral in the equation is simply the cross-section area whereas the second
integral represents the total flux per cross-sectional area. Thus, (A 8) is exactly the
same as (A 2). It is noted here that if the effects of viscous boundary layer flows are
considered, additional mass fluxes along the outer edge of the boundary layer must
be added (see § 4.4).

A.2. Conservation of momentum in exact form
Following a similar averaging procedure, the cross-sectional-averaged momentum
equation can be obtained. Namely, the x-component of the Euler equations, (2.10), is
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first integrated in the vertical direction. Upon using the Leibniz rule and the boundary
conditions (2.14) and (2.15) the vertical integration yields

∂

∂t

∫ εη

−h
udz+ ε ∂

∂x

∫ εη

−h
u2dz+ ε

µ2

∂

∂y

∫ εη

−b
uvdz=−

∫ εη

−h

∂p
∂x

dz. (A 9)

The equation above is then integrated from y=−srl(x, t) to y=−sl(x, t). Using the
Leibniz rule and the boundary conditions, (2.16) and (2.17), in the resulting equation
yields

∂

∂t

∫ sl

−sr

∫ εη

−h
udzdy+ ε ∂

∂x

∫ sl

−sr

∫ δη

−h
uudzdy=−

∫ sl

−sr

∫ εη

−h

∂p
∂x

dzdy, (A 10)

which can be rewritten in terms of the cross-sectional-averaged quantities as

∂

∂t
(A〈u〉)+ ε ∂

∂x
(A〈uu〉)=−A

〈
∂p
∂x

〉
. (A 11)

Equations (A 8) and (A 11) are exact in their present forms. Furthermore, these
equations were derived without any additional constraints on the cross-section
configuration.

Appendix B. Perturbation expansion
The closure of the system given by (3.4) and (3.5) is accomplished by relating 〈uu〉

and 〈∂p/∂x〉 to the spanwise-averaged surface elevation η̃, and the cross-sectional-
averaged velocity, 〈u〉. To accomplish this objective, the dimensionless physical
variables are expanded as power series of µ2, assuming the velocity components on
the cross-section are comparable to, but smaller than the longitudinal velocity. These
expansions are given in (3.8)–(3.12) and will not be repeated here. From (3.10) the
following results can be readily deduced:

〈u〉 = u1 +µ2〈u2〉 +O(µ4), 〈u〉〈u〉 = u2
1 + 2µ2u1〈u2〉 +O(µ4) (B 1a,b)

and

uu= u2
1 + 2µ2u1u2 +O(µ4), 〈uu〉 = u2

1 + 2µ2u1〈u2〉 +O(µ4). (B 2a,b)

Thus,
〈uu〉 = 〈u〉〈u〉 +O(µ4). (B 3)

To find an expression for 〈∂p/∂x〉, the perturbation expansions are substituted into the
Bernoulli equation (2.13) to obtain

∂φ1

∂t
+µ2 ∂φ2

∂t
+ 1

2
εu2

1 + p+ z
ε
=O(ε2, εµ2, µ4). (B 4)

Taking the derivative of the equation above with respect to x first and averaging the
resulting equation over the cross-section of the channel yields

∂2φ1

∂x∂t
+µ2

〈
∂2φ2

∂x∂t

〉
+ 1

2
ε
∂

∂x
(u2

1)+
〈
∂p
∂x

〉
=O(ε2, εµ2, µ4). (B 5)
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Evaluating the Bernoulli equation (B 4) at the surface z= εη yields

∂φ1

∂t
+µ2 ∂φ2

∂t

∣∣∣∣
z=εη
+ 1

2
εu2

1 + η=O(ε2, εµ2, µ4). (B 6)

Note that φ1 and u1 are constants at the cross-section and the atmospheric pressure on
the free surface has been assumed to be zero. The second term in the equation above
is evaluated on the free surface z= εη and can be approximated by the corresponding
term evaluated on the SWL z= 0, i.e.

∂φ2

∂t

∣∣∣∣
z=εη
= ∂φ2

∂t

∣∣∣∣
z=0

+O(ε). (B 7)

Therefore, (B 6) becomes

∂φ1

∂t
+µ2 ∂φ2

∂t

∣∣∣∣
z=0

+ 1
2
εu2

1 + η=O(ε2, εµ2, µ4). (B 8)

Taking the spanwise average across the still water surface, (3.7), of the above equation,
and then taking the derivative of the resulting equation with respect to x yields

∂2φ1

∂x∂t
+µ2 ∂

∂x

(
∂̃φ2

∂t

∣∣∣∣
z=0

)
+ 1

2
ε
∂

∂x
(u2

1)+
∂η̃

∂x
=O(ε2, εµ2, µ4). (B 9)

Subtracting (B 9) from (B 5) yields〈
∂p
∂x

〉
= ∂η̃
∂x
+µ2

[
∂

∂x

(
∂̃φ2

∂t

∣∣∣∣
z=0

)
−
〈
∂2φ2

∂x∂t

〉]
+O(ε2, εµ2, µ4). (B 10)

The last term in the equation above can be approximated using 〈 f 〉 = f +O(ε). Thus,
the cross-sectional-averaged momentum equation can be deduced by substituting
(B 10) and (A 8) into (A 11),

∂〈u〉
∂t
+ ε ∂〈u〉〈u〉

∂x
+ ∂η̃
∂x
+µ2

[
∂

∂x

(
∂̃φ2

∂t

∣∣∣∣
z=0

)
− ∂

2φ2

∂x∂t

]
=O(ε2, εµ2, µ4), (B 11)

which is given in (3.20) and (3.21) in the main text.

Appendix C. Expressions for the cross-section area
The instantaneous cross-sectional area A(x, t) is expressed as the sum of the cross-

sectional area at the quiescent state A0(x) and the contribution due to wave motions
(see (3.1) and (3.2)):

A= A0 + ε
∫ bl

−br

ηdy+
∫ −br

−sr

(εη− h)dy+
∫ sl

bl

(εη− h)dy, (C 1)

where the limits of integration are defined in figure 1, and the first integral on the
right-hand side is, by definition, ∫ bl

−br

ηdy= B0η̃. (C 2)
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FIGURE 17. Definition of components of the cross-section area.

In the regions −sr < y < −br and bl < y < sl, the free surface is approximated by
η = η̃ and the bank slope is assumed to be linear above the SWL (figure 17). Thus,
the second and third integrals in (C 1) are approximated as[∫ −br

−sr

(εη− h)dy+
∫ sl

bl

(εη− h)dy
]
∼ ε

2

2

{
−dyr

dz

∣∣∣∣
z=0

+ dyl

dz

∣∣∣∣
z=0

}
η̃2, (C 3)

where the terms in curly brackets represent the sidewall slopes at the SWL at both
sides of the channel and are assumed to be O(1) or smaller. For convenience these
terms are lumped together and referred to as B′0. The cross-sectional area is, therefore,
approximated as

A= A0 + εB0η̃+ ε2 B′0
2
η̃2 +O(ε2µ2, ε3). (C 4)
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