

"EVALUACIÓN DEL TSUNAMI POR REMOCIÓN EN MASA EN FIORDO AYSÉN, CHILE"

FRANCISCO RIQUELME SALINAS Memoria para optar al título de Ingeniero Civíl Oceánico Profesor Guía:

PATRICIO WINCKLER GREZ JUNIO 2010

CONTENIDO

GENERALIDADES

- HISTORIA DE TSUNAMIS POR REMOCIÓN EN MASA
- ANTECEDENTES
- OBJETIVOS
- HIDRODINÁMICA DE TSUNAMIS
- MODELACIÓN NUMÉRICA
- METODOLOGÍA
- RESULTADOS
- CONCLUSIONES Y RECOMENDACIONES

GENERALIDADES

ALGO DE HISTORIA

TSUNAMI EN LA BAHÍA LITUYA (1958).

TSUNAMI EN PAPUA NUEVA GUINEA (1998).

痰

建

TSUNAMI EN EL EMBALSE DE VAIONT (1963), ITALIA.

ANTECEDENTES DEL TSUNAMI

ÁREA DE ESTUDIO

FIGURA. Geografía de la XI región de Aysén.

Fuente: Biblioteca del Congreso Nacional de Chile .

DESCRIPCIÓN DEL FIORDO AYSÉN

FIGURA. Zona de estudio – Fiordo Aysén.

Bahía Chacabuco 45°28S y 72°49'W.

* Posee un clima frío oceánico el cual favorece la formación de vegetación boscosa de especies singulares.

DESCRIPCIÓN DEL FIORDO AYSÉN

VISTA AÉREA DEL PUERTO CHACABUCO. \sim

49761 497400 49720 49700 Fuente: Elaboración propia.

VISTA AÉREA DE LA CIUDAD DE AYSÉN. \sim

Fuente: Sernageomin.

GRÁFICO. Registro mareográfico del tsunami en Aysén.

Fuente: Shoa.

FIGURA. Zona de estudio - Fiordo Aysén

ANTECEDENTES GEOLÓGICOS

Fuente: Servicio Sismológico Nacional.

建

Rocas plutónicas (granitoides).

MORFOLOGÍA SUBMARINA DEL FIORDO AYSÉN

建

FIGURA. Morfología del Fiordo Aysén en 3D.

ANTECEDENTES: EPICENTRO

PARÁMETROS	Deslizamiento de roca sector Isla Mentirosa Norte	Deslizamiento de roca sector Aguas Calientes Este	Flujo de detritos Quebrada sin nombre (Frente a sector El Tatio)	
Volumen ingresado al agua [millones de m³]	olumen ingresado al agua 7 ± 1 [millones de m ³]		12 ± 2	

ANTECEDENTES: REMOCIONES EN MASA EN LA RIBERA NORTE DEL FIORDO

波

建

ANTECEDENTES: RIBERA SUR DEL FIORDO

REMOCIÓN EN MASA OCURRIDO AL ESTE DEL SECTOR AGUAS CALIENTES.

Fuente: Sernageomin.

ANTECEDENTES: DESLIZAMIENTO EN AGUAS CALIENTES

Fuente: Google Earth.

堻

ANTECEDENTES: OLA INICIAL SECTOR ISLA MENTIROSA

OLEAJE INICIAL DEL TSUNAMI EN LA RIBERA NORTE DE LA ISLA MENTIROSA.

ANTECEDENTES: RUN-UP EN ISLA MENTIROSA

RUN-UP DEJADO POR EL TSUNAMI EN LA ISLA MENTIROSA.

FOTO. Run-up dejado por el tsunami en la Isla Mentirosa.

Fuente: Sernageomin, 2007.

t

٠

Fuente: Sernageomin, 2007.

ANTECEDENTES: INUNDACIÓN SECTOR ESTERO FRÍO

✤ EL ANTES Y DESPUÉS DEL TSUNAMI EN EL SECTOR ESTERO FRÍO.

Fuente: SHOA.

删

ANTECEDENTES: INUNDACIÓN SECTOR PUNTA CAMELLO

♦ EL ANTES Y DESPUÉS DEL TSUNAMI EN EL SECTOR PUNTA CAMELLO.

J.

Fuente: SHOA.

堻

OBJETIVOS

OBJETIVOS ESPECÍFICOS

✓ Calibrar los modelos numéricos a partir de los antecedentes de generación, propagación, run-up e inundación del tsunami ocurrido el 21 de abril de 2007, en Fiordo Aysén.

✓ Determinar las zonas potencialmente inundables del área de Puerto Aysén y Puerto Chacabuco, generadas por una simulación de tsunami hipotético generado por varias remociones en masa en Bahía Acantilada.

✓ Simular la evolución en el tiempo de los tsunamis y determinar alturas, desniveles, y periodos de las olas, como también las velocidades de las corrientes.

HIDRODINÁMICA DE TSUNAMIS

PROCESOS DE UN TSUNAMI INDUCIDO POR UNA REMOCIÓN EN MASA.

FIGURA. TIPO DE TSUNAMIS INDUCIDO POR UNA REMOCIÓN EN MASA: a) Tsunami de origen submarino; b) Tsunami Subaerial.

Fuente: Giorgio Belloti, 2002 .

Fuente: Fritz, 2001.

MODELACIÓN NUMÉRICA

En este capítulo se describen los modelos numéricos Mike 21 BW y Mike 21 HD basados en las ecuaciones de Boussinesq y Saint Venant, respectivamente (Modelos que resuelven la fase).

ECUACIONES DE BOUSSINESQ (MIKE 21 BW)

Las ecuaciones de Boussinesq se deducen integrando verticalmente las leyes de conservación de la masa y de momentum, reduciendo el problema inicialmente tridimensional a un problema bidimensional.

SUPUESTOS:

•

Las ecuaciones mejoradas de Boussinesq suponen un profundidad relativa de d/L<0.5.

Las ecuaciones de Boussinesq incluyen tanto la no linealidad como la dispersión de frecuencia.

Existe una cierta aceleración vertical debido al aumento de la velocidad vertical que crece linealmente desde el fondo hasta un máximo en la superficie libre.

La distribución de las velocidades horizontales es constante a través de la profundidad.

El fluido es newtoniano, isótropo e incompresible.

ECUACIONES DE SAINT VENANT (MIKE 21 HD)

Las ecuaciones Saint Venant utilizadas por el modelo hidrodinámico Mike 21 Flow son ecuaciones de conservación de masa y de momentum, para el flujo medio verticalmente integradas y temporalmente promediadas a escala de la turbulencia y de las olas. Las ecuaciones de Saint Venant representan el flujo con velocidades verticales pequeñas, con dimensiones horizontales predominantes sobre la vertical. Esta integración vertical permite describir el flujo y las variaciones del nivel del agua causado por una remoción en masa en una batimetría variable en el tiempo.

CONSERVACIÓN DE MASA:

SUPUESTOS:

Para el modelado de la turbulencia se utiliza la hipótesis de Boussinesq para la viscosidad Eddy. La distribución de la velocidad es relativamente uniforme en profundidad.

**

El método numérico de las ecuaciones diferenciales de los modelos Mike 21 BW y Mike 21 HD están basado en el esquema de diferencias finitas con malla estructuradas (mallas rígidas). Para resolver las ecuaciones algebraicas se aplica el método implícito con direcciones alternantes ADI (*Alternating Direction Implicit*) no *interactivo*, utilizando técnicas de pasos fraccionados (*fractional-step*). Las ecuaciones resultantes son reducidas a un sistema de tridiagonales, mediante el cual son solucionadas por el método de Doble Barrido (*Double Sweep*).

Fuente: DHI.

METODOLOGIA

En este capitulo se presentan las condiciones iniciales y de borde de los modelos numéricos Mike 21 BW y Mike 21 HD, para la calibración del Tsunami ocurrido el día 21 de abril de 2007 en el Fiordo Aysén. La metodología utilizada en ambos modelos numéricos son muy similares, pero con algunos parámetros de entrada diferentes, lo que ampliará la gama de resultados en este estudio.

PARÁMETROS BÁSICOS

DIMENSIÓN MIKE 21 HD: 36 x 20 [km²] DIMENSIÓN MIKE 21 BW: 27 x 14.2 [km²]

Incremento temporal de 0,5 [s].

MIKE 21 HD

FIGURA. Área batimétrica del Fiordo Avsér

4980 49780 49760

4970

49660

49520

PARÁMETROS DE CALIBRACIÓN

ELEVACIÓN DE LA SUPERFICIE DEL MAR Y DEFORMACIÓN BATIMÉTRICA

REMOCIONES EN MASA	BW: VOLUMEN TOTAL [Millones de m ³]	HD: VOLUMEN TOTAL [Millones de m ³]	HD: DURACIÓN DEL DESLIZAMIENTO [s]	
Sector 1: Isla mentirosa	14,057	5,376	48	
Sector 2: Esteros Luma-Leche	0,537	0,416	10	
Sector 3: Punta Cola	0,280	0,280	-	
Sector 4: Aguas Calientes	0,627	0,604	-	

FIGURA. Mapa de Elevación Superficial Mike 21 BW

Fuente: Elaboración propia.

FIGURA. Mapa de Elevacion Superficial + deformación Batimétrica MIKE 21 HD.

Fuente: Elaboración propia.

ABSORSIÓN, POROSIDAD, FRICCIÓN, VISCOSIDAD EDDY Y ROTURA DE LAS OLAS

TABLA 1. Valores propuestos para el mapa de porosidad del modelo.

PROFUNDIDAD (P)	NÚMERO DE PORC	DSIDAD	CARACTERÍSTICAS
P < 60	0.997		Con un 0.003% porosidad
P > 60	1		Sin porosidad

Fuente: Elaboración propia.

TABLA 2. Valores propuestos para la fricción del fondo en el Fiordo Aysén.

PROFUNDIDAD (P)	NÚMERO DE MANNING [m ^{1/3} /s]
P < 60	55 [BW] – 32 [HD]
P > 60	60

Fuente: Elaboración propia.

MIKE 21 HD = fricción + Viscosidad Eddy + Inundación

En el caso de la Viscosidad Eddy se consideró un valor constante de 2 [m²/s] para todo el dominio físico.

MIKE 21 BW = Absorción + Porosidad + fricción + Viscosidad Eddy +

PRESENTACIÓN DE RESULTADOS Y ANÁLISIS

0

-1.0

14:00

2007-04-21

14:20

14:40

15:00

Tiempo (Hora)

Mike 21 BW 14 12 10 (kilometro) 8 Altural (m) Above 1.6 6 0.8 - 1.6 45° 27' S 0 - 0.8 .08. 4 1.6 - -0.8 -2.4 - -1.6 87' W 48°W 0, W -3.2 - -2.4 ≥ 2 -5 -4 - -3.2 io. 23° å 73° ខ្ល -4.8 - -4 Below -4.8 20 0 2 4 6 8 10 12 14 16 18 (kilometro) 04/21/2007 14:14:49 P(641, 68) Registro simulado Mike 21 HD [m] Punto Mareográfico 1.0 (m) Attrua (m) -1.0 14:50 14:00 14:10 14:20 14:30 14:40 15:00 2007-04-21 Tiempo (Hora)

16 14 12 -10 Alturas (m) (kilometro) _ Above 80 72 - 80 8 -64 - 72 56 - 64 6 45° 27' S 48 - 56 40 - 48 4 32 - 40 72° 45' W 24 - 32 ₿ ≥ 73° D' W 5 2-4 16 - 24 è 8 - 16 å Below 8 0 10 15 30 5 20 25 (kilometro) 14 12 10 (kilometro) -8 6 Velocidad del 5° 27' S Flujo (m/s) 4 Above 8 45' W 6-8 3. ₪ 0.≦ 2 4 - 6 å 2 - 4 h Below 2 0 5 10 15 20 25 30 (kilometro) 04/21/2007 13:53:01 Scale 1:184500 P(641,68) Registro simulado Mike 21 HD [m] PUNTO MAREOGRAFICO 1.0 Altura (m)

15:40

15:20

Mike 21 HD

ANÁLISIS DE SENSIBILIDAD Y CALIBRACIÓN

6	A ~)	
d	P	X		
-/	1		<u>\</u>	
-ð	>	7	8	

PARÁMETROS	REAL		MIKE HD		MIKE BW		∆η _{max} HD	Δη _{max} BW
	Hora	Magnitud [m]	Hora	Magnitud [m]	Hora	Magnitud [m]	%	%
Diferencia máxima Diferencia mínima	14:04 14:36	+0,80 -0,37	14:06 14:18	+0,80 +0,57	14:06 14:10	+0,80 -0,43	0 54	0 16

ANÁLISIS DELTSUNAMI A TRAVÉS DEL TIEMPO

波

建

TIEMPO ESTIMADO DE ARRIBO DEL TSUNAMI

FIGURA. Tiempo de arribo del tsunami simulado con Mike 21 HD y Mike 21 BW, respectivamente.

ANÁLISIS DE LAS ZONAS INUNDADAS

ANÁLISIS DE LAS ZONAS INUNDADAS

FIGURA. Típicas alturas de las ondas en Caleta Dagny y Caleta Jorge.

RESUMEN DE INUNDACIÓN

FIGURA. Mapa de run-up del tsunami: Sernageomin vs Mike 21HD.

Fuente: Elaboración propia.

RESUMEN

TABLA. Resumen de los resultados registrados con el modelo Mike 21 HD.								
050500	INUNDACIÓN			PARÁMETROS DE LA ONDA				
SECTOR	TIEMPO DE ARRIBO		ÁREA	RUN-UP	ELEVACIÓN	ALTURA	VELOCIDAD	
	[Min]	[Segundo]	[m ²]	[m]	[m]	[m]	[m/s]	
Playa Blanca	2,72	163	520.000	3,0	2,5	3,0	0,7	
Caleta Rabudos	2,83	170	174.400	10,0	5,0	12,0	1,9	
Caleta Dagny	1,23	74	312.000	8,2	5,0	8,0	6,6	
Caleta Jorge	3,75	225	363.200	3,0	3,0	4,0	3,5	
Isla Mentirosa	0,08	5	27.200	52,0	30,0	44,0	10,8	
Estero Frio	0,47	28	65.600	14,0	8,0	18,0	4,0	
Punta Yelcho	5,98	359	60.000	6,5	6,0	10,0	2,8	
Caleta Bluff	7,67	460	148.800	4,6	1,6	6,0	2,7	
Bahía Chacabuco	8,88	533	356.800	1,5	0,8	2,0	1,6	
Desembocadura del río Aysén	13,83	830	672.000	2,5	2,0	3,8	0,3	
Isla Carmen	5,53	332	22.400	3,5	3,4	4,0	0,6	
Isla Partida	5,55	333	12.800	2,8	2,1	2,5	0,3	
Isla de las Nalcas	11,00	660	150.400	1,6	1,5	2,0	2,6	
Ensenada Baja	13,67	820	16.000	1,0	0,1	0,3	0,3	

Fuente: Elaboración propia.

痰

建

EVOLUCION DEL TSUNAMI 1D

淚

建

TSUNAMI EN LA BAHÍA ACANTILADA

FIGURA. Áreas consideradas para la simulación en Mike 21 HD.

Fuente: Elaboración propia.

EVOLUCIÓN DEL TSUNAMI

痰

TIEMPO ESTIMADO DE ARRIBO DEL TSUNAMI

Fuente: Elaboración propia.

建

ANÁLISIS DE LAS ZONAS INUNDADAS POR EL TSUNAMI EN BAHÍA ACANTILADA

FIGURA. Mapa de inundación del Fiordo Aysén.

ANÁLISIS DE LAS ZONAS INUNDADAS

FIGURA. Run-up (R) con los niveles de inundación frente a la Bahía Acantilada.

FIGURA. Típicas alturas de las ondas del tsunami en la I. del Nalcas, B. Acantilada, R. Aysén, C.Aysén.

RESUMEN DE INUNDACIÓN

FIGURA. Mapa de run-up del tsunami.

Fuente: Elaboración propia.

建

RESUMEN - TSUNAMI EN BAHIA ACANTILADA

IABLA. Resumen de los resultados registrados con el modelo Mike 21 HD.									
		INUNDACIÓN		PARÁMETROS DE LA ONDA					
SECTOR	TIEMPO DE ARRIBO		ÁREA	RUN-UP	ELEVACIÓN	ALTURA	VELOCIDAD		
	[Min]	[Segundo]	[m²]	[m]	[m]	[m]	[m/s]		
Playa Blanca	8,83	530	504.000	2,4	1,8	4,0	0,5		
Caleta Rabudos	8,47	508	147.200	6,2	3,8	6,0	1,0		
Caleta Dagny	5,50	330	235.200	7,0	5,5	8,0	5,7		
Caleta Jorge	3,50	210	606.400	7,9	5,9	9,0	6,5		
Punta Yelcho	5,08	305	75.200	27,3	14,5	16,0	8,1		
Río Cóndor	2,83	170	201.600	7,4	7,1	7,0	6,4		
Caleta Bluff	4,17	250	192.000	15,2	6,4	9,0	6,0		
Bahía Chacabuco	5,28	317	300.800	3,6	3,5	5,0	2,8		
Ribera Rio Aysén	3,83	230	236.800	1,5	2,1	2,0	2,5		
Isla Carmen	2,05	123	62.400	36,7	22,5	26,0	4,0		
Isla Partida	1,08	65	86.400	51,2	22,0	26,0	5,0		
Isla de las Nalcas	2,38	143	604.800	11,3	7,9	9,0	12,0		
Desembocadura rio Aysén	1,67	100	4.897.600	15,9	9,0	10,0	10,0		
Ensenada Baja	9,17	550	118.400	2,7	0,5	0,5	0,7		
Ribera Ciudad de Aysén	39,33	2360	100.800	0,8	0,7	0,8	0,7		

Fuente: Elaboración propia.

ŧ

CONCLUSIÓN

TSUNAMI DEL 21 DE ABRIL EN FIORDO AYSÉN

- Los resultados obtenidos a través de los modelos numéricos se consideraron aceptables, dado que el comportamiento del tsunami y los alcances de la inundación coinciden con las evidencias registradas durante y después del día 21 de abril de 2007.
- Puede afirmarse que ambos modelos numéricos fueron útiles para simular el fenómeno de la propagación de tsunami y sólo el modelo Mike 21 HD lo fue para simular los efectos de inundación costera.
 - La resolución numérica de diferencias finitas resultó ser una herramienta apropiada para el conocimiento aproximado de las diferentes variables que intervienen en el problema planteado.
 - Además, las ecuaciones de ambos modelos junto con las condiciones iniciales y de borde, determinaron adecuadamente la aproximación al fenómeno real que trató de reproducirse.
 Por lo tanto, estas herramientas podrían permitir a la autoridad local encargada de los planes de emergencia contar con un elemento de apoyo para la elaboración de dichos planes.

TSUNAMI EN BAHÍA ACANTILADA

- Según los resultados de inundación, sólo sería conveniente tomar medidas de mitigación en la zona urbana del Puerto Chacabuco, descartando el sector más afectado frente a la Bahía Acantilada, debido que es una zona despoblada y de muy poco interés.
- En el sector del Puerto Chacabuco habría que tomar precaución en las embarcaciones cercana al puerto, ya que estas podrían ser arrastradas con gran fuerza hacia la línea de costa y aumentar los daños sobre la región.
- Con respecto las ondas al frente de onda de tsunami propagada hacia la ciudad de Aysén, éstas podrían generar algún perjuicio a embarcaciones pequeñas, pero sin efectos considerables debido a la poca altura de sus olas.

- Utilizar herramientas que estén debidamente validadas con datos e información de terreno, al igual como se realizó en este estudio, para contar así con una real capacidad de simulación de tsunamis. Esto permitirá a la autoridad local tomar medidas de mitigación con mayor efectividad sobre la región.
- Respecto al tsunami hipotético simulado en Bahía Acantilada, se recomienda a las autoridades evaluar las áreas de inundación y los tiempos de arribo, principalmente en las zonas pobladas.
- Las medidas de mitigación de tsunamis que se elaboren debieran ir acompañados de planes de contingencia que incluyan obras ingeniería costera, estructuras de protección adecuadas para disminuir los efectos destructivos de los tsunamis.
- Para elaboración de cartas de inundación se recomienda utilizar el modelo Mike 21 HD, ya que cumple con la mayoría de los requisitos para desarrollar eficientemente planes de contingencias.

